
BEGINNER
GETTING STARTED

64

Create an Application
Launcher

by Chris Barlow

Visual Basic 5.0 or 6.0

WHAT YOU NEED

Make sure your user runs the latest version of your
app after you make changes to the code.

Click & Retrieve
Source

CODE!
ou’ve completed your Visual Basic system
and installed it on the user’s computer. It
consists of a database and three differentY

applications. You’ve put shortcuts to all three appli-
cations on the user’s desktop. The user has double-
clicked on the shortcuts and seen the database open
and each application start up. The user is satisfied,
so you’re all done, right?

If you’ve ever been through a system startup,
you know the answer. You’re not even close to
“all done”—in some ways, this is just the beginning. I
guarantee the user will soon call and tell you one of the
applications isn’t working, or he wants a “minor”
change in one of the screens. Or you’ll find a little code
you want to tweak or a feature you want to improve.

Welcome to the world of system maintenance.
Fortunately, Visual Basic makes it easy to implement
the changes users invariably want as they use the
system day to day. You can change menus, redraw
screens, and even add new fields to the database,
almost faster than users can tell you what they want.
Most of these changes require only a simple compile
of a new EXE—not an entirely new setup kit.

Although making the changes is easy, you need to
get the new, updated version of your application in
place before the user can launch it. This isn’t as easy
as it sounds. Often you don’t visit the user’s site to
install the new version; instead, you connect to his or
her computer through a modem, LAN, or the Internet.
You might connect directly to the user’s disk to
overwrite your old EXE, or you might simply see a
shared server on the user’s network. You can’t have
your applications reside on the server and point each
user’s desktop shortcuts to the server—suppose the
user is running the application when you want to
replace it. You’ll get an error message telling you the
file is open and cannot be overwritten.

You can solve this problem by creating an application
launcher. Whenever a user wants to run one of the
applications in the system, his or her request is funneled
through the launcher. Unlike a typical, rigid menu
application, in most cases the user doesn’t even realize
the application launcher is being executed. Its job is to
make sure the latest version of the app is running.

Because the desktop shortcuts point to the
launcher rather than directly to the application, the
launcher fires up when the user double-clicks on the
shortcut to launch an application. The launcher
looks at the version information from the
application’s EXE file in the program folder. Then
the launcher looks for the same EXE file in a
predefined install folder on that computer or a
server and checks the version information of that
file. If the EXE file in the install folder is newer, the
launcher copies the newer version into the program
folder. Finally, the launcher gives the command to
launch the application, and terminates.

The launcher makes program upgrades easy. Sim-
ply copy a new version of the app to the install folder
after it is compiled. The launcher copies your new
version to the program folder and launches it the next
time the user runs the app.

You can also centralize functionality in the launcher
because requests to run your applications are fun-
neled through it. For example, you could use the
launcher to log the user onto your system by request-
ing a user ID and password, and verifying this infor-
mation against a database. You could even “lock up”
your applications so they won’t start unless they
receive a certain code on the command line from the
launcher. That way, the user could not run the
application directly, but would always have to go
through the launcher.

Create a Launcher
You must control the version of your application to use
the launcher. Visual Basic makes it easy to identify your
program by adding a version resource to the EXE file.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ APRIL 1999

Use the Options button on the Make Project window
to modify the information about your app. I suggest
setting the option to automatically increment the
revision each time you compile the application. You
can override the Minor and Major properties as you
make substantial changes to your application.

In my August 1997 VBPJ column, “Identify an
App’s Version,” I wrote an ActiveX DLL that reads
this version information, along with the file’s date
and time. The launcher uses this FileVer DLL to read
the version resource information from the file in both
the program and install folders to determine which is
more recent. You can download this DLL from The
Development Exchange (see the Download Free
Code box at the end of this column for details).

To create the launcher, start a new Standard EXE
project in Visual Basic, and right-click on the Project
window to add a module. Click on the Properties
menu item on the Project menu, and name the project
Launcher. Set the Startup Object to Sub Main. Then
click on the References menu item on the Project
menu to add a reference to the FileVer DLL.

VB’s Standard EXE project has a single form you
can use as a splash screen to let the user know what’s
happening while you copy the upgraded EXE file.
Rename it Splash.frm. I suggest designing a simple
form with Label controls for the launcher’s version
and copyright, as well as a larger Label control to
display the action that the launcher is performing.

The Main subroutine executes when the launcher
starts. First, show the Splash form so the user has
some visible feedback. Use the GetSetting statement
to get the setting for the install folder from the
registry, and store the setting in a public variable
called InstallFolder. If this variable is null, as it will be
the first time the launcher runs on a computer, use
the InputBox function to request the install folder. If
the user doesn’t enter a folder or clicks on the Cancel
button, the launcher will terminate; otherwise, the
install folder setting is saved to the registry:

Public Sub Main()

Dim txt$

Splash.Show

Splash.Refresh

InstallFolder = GetSetting("Launcher", _

"Folders", "InstallFolder", "")

If Len(InstallFolder) = 0 Then

InstallFolder = InputBox _

("Please enter path to " & _

"Install Folder", _

"No Install Folder", App.Path)

If Len(InstallFolder) = 0 Then End

SaveSetting "Launcher", "Folders", _

"InstallFolder", InstallFolder

End If

The application to be launched is passed on the
VBPJ APRIL 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
command line with the full path to the application.
Set the Command Line Arguments on the Make tab
of the Project Properties dialog to test this in debug
mode (see Figure 1). VB makes command line argu-
ments available through the Command property of
the App object. If this property is null, then the user
hasn’t specified a program to launch, and an appro-
priate error message is displayed:

If Len(Command) = 0 Then

txt = "This program will " & _

"launch the program " & _

"specified on the command " & _

"line." & vbCrLf

txt = txt & "It will compare " & _

"this program's date and " & _

"version against the same " & _

"program in " & vbCrLf

txt = txt & InstallFolder & vbCrLf

txt = txt & "and give you the " & _

"option to replace your " & _

"program with this version." & _

vbCrLf

txt = txt & "Please enter path " & _

"and EXE name on command " & _

"line and re-run this program."

MsgBox txt

The Command property is parsed at the first
space if there is any text on the command line, in
case additional command line arguments need to be
passed to the launched program (see Listing 1 for the
Figure 1 Your Project’s Make Properties.
This dialog lets you set the Command Line Arguments
that you need to test the launcher application in the
Visual Basic design environment.
65

BEGINNER
GETTING STARTED

66

Launcher ModuleVB5 or VB6

 Continued on page 69.
Option Explicit
Public Const Prognme = "Launcher" 'Program Name
Public Const ProgVer = "1.01.05" 'Program Version

Public InstallFolder As String

Public Sub Main()
Dim txt$
Splash.Show
Splash.Refresh
InstallFolder = GetSetting("Launcher", "Folders", _

InstallFolder", "")
If Len(InstallFolder) = 0 Then

InstallFolder = InputBox(_
"Please enter path to install folder", _
"No Install Folder", App.Path)

If Len(InstallFolder) = 0 Then End
SaveSetting "Launcher", "Folders", "InstallFolder", _

InstallFolder
End If
If Len(Command) = 0 Then

txt = "This program will launch the program " & _
"specified on the command line." & vbCrLf

txt = txt & "It will compare this program's date " & _
"and version against the same program in " & _
vbCrLf

txt = txt & InstallFolder & vbCrLf
txt = txt & "and give you the option to replace " & _

"your program with this version." & vbCrLf
txt = txt & "Please enter path and EXE name on " & _

"command line and re-run this program."
MsgBox txt

Else
If ProgCheck(ParseString(Command, " ", 1)) Then

Shell Command, 1
End If
Unload Splash

End If
End
End Sub

Private Function ProgCheck(File$) As Boolean
Dim verLocalF$, res%
Dim verServerF$
Dim prgServerF$, msg$
res = FileExist(File)
If res = True Then

verLocalF = GetProgVersion(File)
Else

msg = File & " is not in Program folder." & vbCrLf
End If
prgServerF = InstallFolder & "\" & _

StripPathName(File)
res = FileExist(prgServerF)
If res = True Then

verServerF = GetProgVersion(prgServerF)
On Error GoTo ErrorHdler
If verLocalF < verServerF Then

Splash.lbComment = "Copying from Server"
Splash.Refresh
FileCopy prgServerF, File
msg = ""

End If
ProgCheck = True
ElseIf res = 53 Then
If Len(msg) = 0 Then ProgCheck = True
msg = msg & prgServerF & _

" is not in Install folder."
End If
If Len(msg) Then MsgBox msg
Exit Function

ErrorHdler:
If Err = 13 Or Err = 70 Then

msg = "Error! This program cannot be copied." & _
vbCrLf

msg = msg & "Possible Reason:" & vbCrLf
msg = msg & "1. Your application may be " & _

"currently running" & vbCrLf
msg = msg & "2. Permission denied, " & _

"no file copied" & vbCrLf
msg = msg & "Solution:" & vbCrLf
msg = msg & "1. Exit the current running program " & _

"and run the program again" & vbCrLf
msg = msg & "2. Continue to use the existing " & _

"program, but you won't get the new version"
MsgBox msg, vbExclamation, "Copy Error"

End If
Exit Function
End Function

Private Function GetProgVersion(File$) As String
Dim cF As New cFileVer

On Error GoTo Errhdlr
cF.sFileName = File$
cF.GetFileVersionData
GetProgVersion = cF.sFileVersion

Exit Function

Errhdlr:
MsgBox "Error= " & Error$ & " Err=" & _

Err.Number & Chr(13) & "File name=" & _
"(" & File$ & ")"

End Function

Function ParseString(s$, del$, n) As String
Dim pos As Long, i As Integer, pos2 As Long
ParseString = s$
pos = InStr(s$, del$)
If pos Then'if has del$

If n = 1 Then
ParseString = Left$(s$, pos - 1)

Else
For i = 1 To n - 1 'count items

pos2 = InStr(pos + 1, s$, del$)
If pos2 = 0 Then 'end of string

If i = n - 1 Then
ParseString = Trim(Mid$(s$, pos + _

Len(del$))) 'len of delimiter
Else

ParseString = "" 'nth item not found
End If
Exit Function

End If
ParseString = Trim(Mid$(s$, pos + _
Listing 1 This module contains the ParseString procedure, which you use to parse the Command property.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ APRIL 1999

ParseString procedure). The file path is
passed as an argument to a ProgCheck
procedure to check the version informa-
tion. The application launches using the
Shell statement if the ProgCheck proce-
dure returns True. Finally, the Splash form
is unloaded, and the launcher terminates:

Else

If ProgCheck(ParseString(Command, _

" ", 1)) Then Shell Command, 1

End If

Unload Splash

End If
VBPJ APRIL 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣

 Continued from page 68.

Download the code for this issue of
VBPJ free from www.vbpj.com.

To get the free code for this entire
issue, click on Locator+, the right-most
option on the menu bar at the top of the
VBPJ home page, and type VBPJ0499
into the box. (You first need to register,
for free, on DevX.) The free code for
this article includes all code listings,
plus the code files for the launcher app
and the FileVer DLL from the August
1997 Getting Started column.

To get the code for this article only,
available to DevX Premier Club mem-
bers, type VBPJ0499GS into the Lo-
cator+ field.

DOWNLOAD FREE CODE

Chris Barlow, a recognized expert in the
Internet, Web, messaging, and applications
development, is a frequent speaker at VBITS,
Tech•Ed, and DevDays. Chris holds degrees
from Harvard Business School and Dartmouth
College. Reach him at Chris@VBExpert.com.

About the Author
End

End Sub

Checking the Version
The ProgCheck procedure needs to check if
the file exists in both the program and install
folders. The ProgCheck procedure also
checks the versions and copies the EXE from
the install folder if it is a newer version. First,
check for the file in the program folder and
get its version with the GetProgVersion
procedure:

Private Function ProgCheck(File$) _

As Boolean

Dim verLocalF$, res%

Dim verServerF$

Dim prgServerF$, msg$

res = FileExist(File)

If res = True Then

verLocalF = GetProgVersion(File)

Else

msg = File & " is not in " & _

"Program folder." & vbCrLf

End If

Next, check for the file in the install
folder, get its version, and compare the two
versions. If the program folder version is
lower, put a message in the Comment label
on the Splash form and use the FileCopy
statement to copy the file:

prgServerF = InstallFolder & "\" & _

StripPathName(File)

res = FileExist(prgServerF)

If res = True Then

verServerF = _

GetProgVersion(prgServerF)

On Error GoTo ErrorHdler

If verLocalF < verServerF Then

Splash.lbComment = _

"Copying from Server"

Splash.Refresh

FileCopy prgServerF, File

msg = ""

End If

ProgCheck = True

The procedure ends with appropriate error
handling.

The GetProgVersion procedure is
simple because it uses the FileVer DLL.
Simply dimension an instance of the
cFileVer class and set the sFileName prop-
erty. Then call the GetFileVersionData
method, which returns the sFileVersion
property:
Private Function _

GetProgVersion(File$) As String

Dim cF As New cFileVer

On Error GoTo Errhdlr

cF.sFileName = File

cF.GetFileVersionData

GetProgVersion = cF.sFileVersion

Exit Function

Errhdlr:

MsgBox "Error= " & Error$ & _

" Err=" & Err.Number & _

Chr(13) & "File name=" & _

"(" & File$ & ")"

End Function

You can download the files for the
launcher from The Development Exchange
(see the Download Free Code box for de-
tails). I’m curious to see how you enhance
the launcher. How about looking at a Web
server rather than an install folder to check
for the latest app? Then you could update
your apps over the Internet! VBPJ

Editor’s Note: This column has been updated
from Chris’ September 1997 Getting Started
column. The code is updated for VB6 and
includes a few bug fixes.
Len(del$), pos2 - pos _
- Len(del$)))

pos = pos2
Next

End If
ElseIf n > 1 Then

ParseString = ""
'nth item not found

End If
End Function

Function FileExist(fname) As _
Integer

'checks if file exists,
'returns True or error

Dim FileRet As Integer
On Error Resume Next
'first check for directory
FileRet = Len(Dir(fname, _

vbNormal))
'SJS 1/13/97 -
'add vbNormal parameter
If Err Then

FileExist = Err
ElseIf FileRet Then

FileExist = True
Else

FileExist = 53
End If
On Error GoTo 0

End Function

Function StripPathName(fname _
As String) As String

'returns filename
On Error Resume Next
Dim i As Integer
For i = Len(fname) To 1 Step -1

If Mid(fname, i, 1) = "\" Then
 Exit For
End If

Next
StripPathName = Trim(Mid(fname, _

i + 1))
End Function
67

	Code

