
70

BEGINNER
GETTING STARTED

Learn how to persist the data in VB classes using
simple file techniques.

by Stan Schultes and Chris Barlow

WHAT YOU NEED

Visual Basic 5.0 or 6.0
Access 97

Click & Retrieve
Source

CODE!
implement class persistence. We’ll take a look at a
couple ways to persist the data in a class, then focus on
a specific technique with some sample code.

First, what does the term “persist” mean? In the
context of a class, persistence refers to the ability to
save an instance of the class into some sort of storage
so you can restore the contents later. The instance of
the class itself is not saved, but the values contained in
the class properties are saved. An instance of a class is
often called an “object,” but that term is so broadly
used that to prevent confusion, we’ll talk only of
classes or instances of classes here.

If you have developed an ActiveX control, you
might be aware that controls have always been able to
persist their design properties. A control’s design-
time properties are stored in its CTX binary file
through the PropertyBag object. VB6 has also added
the ability for ActiveX components (DLLs or EXEs)
to persist properties of their classes using the
PropertyBag. (See the VB Help topic titled “Persist-
ing a Component’s Data” in the VB6 documentation

E ver since VB4 added support for classes, people
have asked, “How do I persist the data in my
classes?” You can use several approaches to
for more information and sample code.)
Using the PropertyBag to persist design-time prop-

erties of ActiveX controls or ActiveX components is a
powerful capability, and is useful when appropriate.
To use the PropertyBag, however, you must develop
ActiveX controls in VB5 or VB6, or build ActiveX
components with VB6. Also, you need to write code
to individually persist each property and to indicate
changes to each property using a special function
called PropertyChanged. This can be a lot of work for
classes with a large number of properties.

You must first decide where to store the data when
designing a class persistence mechanism. You can use
any of the normal storage mechanisms—a database,
files, the Registry, and so on. What you choose for a
particular application depends on what specific prob-
lem you need to solve (and how much data is stored).
Rather than trying to analyze a wide range of prob-
lems and tradeoffs, we’ll look at a simple application
you can build with VB5 or VB6.

The sample application illustrated here uses a simple
technique for persisting class properties using binary
files. The idea is to create a User Defined Type (UDT)
containing elements corresponding to each property of
the class. You can write the UDT to a binary file with
a single Put command, and read it back in using a single
Get command. This allows you to persist any data type
as part of the UDT without having to do any manual
data conversion. The source of data used in the sample
application comes from a Microsoft accessory pro-
gram: the Deluxe CD player database.

Would You Like to Dance?
The Microsoft Plus! 98 CD contains an updated
music CD player application called Deluxe CD that
can download album title and track information
from the Internet. Deluxe CD stores this informa-
tion, along with some menu choice data, in an Access
Figure 1 Simple Test Harness. Export CD records to object
files, or import object files for a quick and easy replication utility.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ MARCH 1999

97 database in the Windows directory. If you listen to
music on several computers (especially if some have
no Internet connection), the album information might
not stay in sync between machines.

Although this is a somewhat contrived example,
many business applications have this same data syn-
chronization problem. The basic idea in this sample
is to use classes to read data from a database and persist
this data to files. You can transfer these binary “object
files” to other computers whose databases are then
updated. Sure, you could share the database on a
server and do data replication in other ways, but you
can use this simple technique even when there is no
direct connection between computers. You can share
files easily by compressing and e-mailing them.

You can find the code for this article on The
Development Exchange (see the Download Free Code
box at the end of this column for details). The sample
is fairly simple, serving only to illustrate the class
persistence technique discussed earlier. If you don’t
have the Deluxe CD player from the Plus! 98 CD, the
download includes a small sample database along with
some sample object files. Start a Standard EXE project
in VB, and set the project name to Persist. Add a class
module by selecting Add Class Module from the
Project menu. Name the class CTitle in the Properties
window. Add a module by selecting Add Module from
the Project menu and name it modPersist. Then save
the project. With Access 97, open the sample database
(DeluxeCD.mdb) that comes with the downloaded
code. The “real” database should be in your Windows
directory (usually C:\Windows\ on Win95/98 and
C:\Winnt\ on WinNT).

Look at the Titles table in design mode. In the
UDT that represents this table, the text fields become
Strings, the numeric fields become Long, and the
binary field becomes a byte array. In the CTitle class,
add a private Type declaration to store the class
properties:

Private Type TitlesStruct

'file header info

m_sHDRID As String * 10

m_sVersion As String * 5

m_lFileDTS As Long

'actual Title properties

m_lTitleID As Long

m_sArtist As String * 128

m_sTitle As String * 128

m_sCopyright As String * 128

m_sLabel As String * 128

m_sReleaseDate As String * 128

m_lNumTracks As Long

m_lNumMenus As Long

m_sPlayList As String * 255

m_byteTitleQuery(254) As Byte

End Type

Private m_yTitles As TitlesStruct
VBPJ MARCH 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
The first three fields are not contained in the
database, but serve as a simple object file header.
Declare the database string fields as fixed-length
strings in the UDT. This follows the database design,
which allots a specific size to each text field. The
binary database field is declared in the UDT as a byte
array of 255 elements. The “m_” prefix on each
element indicates these are private class member
variables. For each of the class properties, create Let
and Get property procedures such as these Title
property procedures:

Public Property Let Title(ByVal _

sData As String)

m_yTitles.m_sTitle = Trim$(sData)

End Property

Public Property Get Title() As String

Title = Trim$(m_yTitles.m_sTitle)

End Property

In the sample code, note that the TitleQuery
property procedures contain extra code required to
copy byte arrays. The downloaded code also contains
error handling in each property procedure, which the
preceding code omits for space reasons.

The database includes three additional tables: Batch,
Menus, and Tracks. The Tracks table contains a list of
Listing 1 Use the VB Put command through a UDT to persist Title properties to a binary
file. Then call the FileSave method for each CTrack class instance in the collection,
persisting each Track’s data to the file.

Public Function FileSave(ObjectsPath As String) As Boolean
'saves contents of the Title object to the specified path

Dim sFileName As String
Dim iFileNum As Integer
Dim idx As Integer
Dim oTemp As Object

sFileName = ObjectsPath & "\" & TitleID & ".cdo"
'delete existing file before creating the new one
If Len(Dir(sFileName)) Then

Kill sFileName
End If

iFileNum = FreeFile
Open sFileName For Binary Lock Read Write As #iFileNum
'write the structures out
Put #iFileNum, , m_yProperties
'now Tracks collection
For idx = 1 To NumTracks

Set oTemp = m_colTracks.Item(CStr(idx))
oTemp.FileSave iFileNum

Next
Close #iFileNum
Set oTemp = Nothing
FileSave = True

End Function

VB5, VB6 CTitle Class FileSave Method
71

72

VB5, VB6 CTitle Class DBLoad Method

Continued on page 74.
the Track names that correspond to each
Title. The linking field is TitleID. The free
downloaded code does not implement the
Batch or Menus tables. Create another class
named CTrack to manage the information
for a track. Here’s the UDT for this table (this
structure also contains two file header fields
that do not appear in the database itself):

Private Type TracksStruct

'track header info

m_sHDRID As String * 10

m_sVersion As String * 5

'actual track properties

m_lTitleID As Long

m_lTrackID As Long

m_sTrackName As String * 128

End Type

Private m_yProperties As TracksStruct

Think about how Titles and Tracks are
related. Each music CD has a single Title. A
variable number of Tracks correspond to
specific Titles. An easy way to represent this
relationship in code is with a VB Collection.
In the CTitle class, add a member collection
to contain CTrack class instances:

Private m_colTracks As Collection

Add a Clear method to both the CTitle
and CTrack classes so you can clear the
UDTs and initialize the header fields. This
allows you to reuse the class instances easily.
In the Class_Initialize event for each class,
call the Clear method to initialize the UDTs
when you create instances of the class. The
CTitle class also contains a ClearCollection
method to empty the set of CTrack class
instances associated with a Title.

Now for the two key methods that actu-
ally persist the class to a file: FileSave and
FileLoad. The Title class FileSave method
(see Listing 1) opens a file as binary (named
as the TitleID with extension CDO, for CD
Object). This code in FileSave writes the file:

Open sFileName For Binary Lock Read _

Write As #iFileNum

'write the structures out

Put #iFileNum, , m_yProperties

'now Tracks collection

For idx = 1 To NumTracks

Set oTemp = _

m_colTracks.Item(CStr(idx))

oTemp.FileSave iFileNum

Next

Close #iFileNum
Public Function DBLoad(ADOConn As Connection, & TitleIDInput As String) _
As Boolean

'Loads from database to Title class
Dim cm As New ADODB.Command
Dim rs As New ADODB.Recordset
Dim vArray As Variant
Dim iCount As Integer
Dim oTrack As CTrack
On Error GoTo DBLoad_Error

'find the specified Title
cm.ActiveConnection = ADOConn
cm.CommandText = "Select * From Titles Where " _

& "TitleID = " & TitleIDInput
cm.CommandType = adCmdText
Set rs = cm.Execute

'load the structure with the current Title record
If Not rs.EOF Then

TitleID = rs("TitleID")
Artist = "" & rs("Artist")
Title = "" & rs("Title")
Copyright = "" & rs("Copyright")
Label = "" & rs("Label")
ReleaseDate = "" & rs("ReleaseDate")
NumTracks = rs("NumTracks")
NumMenus = rs("NumMenus")
PlayList = "" & rs("PlayList")
vArray = "" & rs("TitleQuery")
TitleQuery = vArray

End If

'create a collection of Track structures that go with this Title
cm.CommandText = "Select * From Tracks Where " & "TitleID = " & _

TitleIDInput
Set rs = cm.Execute
If m_colTracks Is Nothing Then

Set m_colTracks = New Collection
Else

ClearCollection m_colTracks
End If
Set oTrack = New CTrack
Do While Not rs.EOF

iCount = iCount + 1
If oTrack.DBLoad(rs) Then

m_colTracks.Add oTrack, CStr(iCount)
Else

MsgBox "Error adding Track " & CStr(iCount) & " for TitleID: " & _
TitleIDInput

End If
rs.MoveNext
Set oTrack = New CTrack

Loop
'adjust count in Titles
If iCount <> NumTracks Then

'log the difference?
MsgBox "TitleID: " & TitleIDInput & ", NumTracks/Actual= " & _

CStr(NumTracks) & " / " & CStr(iCount)
NumTracks = iCount

End If
Listing 2 Use ADO to find and read a specific Title record from the database, then create
a collection of Track class instances. This form of class persistence uses a database as
the storage.
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ MARCH 1999

About the Author

Stan Schultes is an experienced project man-
ager and VB developer, and has spoken on
VB at Microsoft’s DevDays conference. Stan
is an MCP in Visual Basic and holds a degree
in computer engineering from Purdue Univer-
sity. Reach Stan at Stan@VBExpert.com.

Chris Barlow, a recognized expert in
Internet, Web, messaging, and applications
development, speaks at VBITS, Tech•Ed,
and DevDays, and has been featured in two
Microsoft videos. Chris holds degrees from
Harvard Business School and Dartmouth
College. Reach him at Chris@VBExpert.com
or on the Web at www.VBExpert.com.

Download the code for this issue of
VBPJ free from www.vbpj.com.

To get the free code for this entire
issue, click on Locator+, the right-
most option on the menu bar at the top
of the VBPJ home page, and type
VBPJ0399 into the box. (You first
need to register, for free, on DevX.)
The free code for this article includes
all code listings, including a listing con-
taining the modPersist module’s
ExportAlbums function, plus a sample
application illustrating a simple tech-
nique of class persistence.

 To get the bonus code for this
article, available to DevX Premier Club
members, type VBPJ0399GS into the
Locator+ field. The bonus code includes
all the free code described above, plus
a fully developed utility for doing syn-
chronization of Deluxe CD Player data-
bases between two computers.

DOWNLOAD FREE CODE

Continued from page 73.
Using the Put command, the entire UDT
is written to the file in one fast operation,
with no data conversion required. Call the
FileSave method of each CTrack instance in
the collection to write its own properties to
the file:

Public Sub FileSave(FileNum As Integer)

'writes the Track object to a file

Put #FileNum, , m_yProperties

End Sub

NumTracks in the Title class indicates
how many tracks are in the collection. Read-
ing a file in FileLoad is similar, except you
read the contents using the Get command,
and the Tracks collection is created. In a
manner similar to saving, the UDTs are
each loaded in one Get operation with no
data conversion.

Have Data, Will Test
Microsoft provides a wide range of tools that
allow you to access and manipulate data in
databases, such as Data Access Objects (DAO),
Remote Data Objects (RDO), and ActiveX
Data Objects (ADO). Although any of these
work, we used ADO for the sample Persist
application. On the Project menu under Ref-
erences…, include a reference to the Microsoft
ActiveX Data Objects 2.0 Library (by default
in C:\Program Files\Common Files\
System\ADO\msado15.dll). ADO 1.5 also
works in VB5 with the code in this sample.

Use simple ADO functions to read and
write data between the Access 97 database
and classes. Both CTitle and CTrack have
methods named DBLoad (see Listing 2) and
DBSave. The modPersist module contains
ExportAlbums and ImportAlbums functions
that handle class instantiation, database man-
agement tasks, and searching logic.

Finally, to test the classes, add a form to
the project (see Figure 1), three command
VBPJ MARCH 1999␣ ␣ ␣ ␣ •␣ ␣ ␣ ␣ www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
buttons (cmdExit, cmdExport, and
cmdImport), and one label control
(lblStatus). Add code to the event procedure
for each button (download Listing 3 from
DevX; see the Download Free Code box for
details). Notice write-only property proce-
dure Status in Form1. This allows you to set
the label control’s caption from outside the
form without referring directly to the label
control by name. The database and object
file paths passed to the ExportAlbums and
ImportAlbums functions default to
App.Path, a built-in VB property. App.Path
returns the source code directory path while
in VB design mode. Run the application
and step through the code to see how simple
class persistence works.

Back to the two tables we ignored in the
Deluxe CD database: Menus and Batch.
The Menus table contains menu items ap-
pearing under the Internet Options button
on the Deluxe CD player application. We
left it as an exercise for you to implement
class persistence on the Menus table. Hint:
Add another class called CMenu, and add
another collection to the CTitle class. The
CMenu class is similar to the CTrack class
(but be sure to handle the binary MenuQuery
field properly). The Batch table is used for
downloading track information; you can
ignore it. A viewer application for the ex-
ported binary object files would be another
interesting project.

You can often modify existing code eas-
ily to use this class persistence technique by
adding Type and End Type statements
around the declarations for private member
variables in a class (and referring to the new
Type in the property Let and Get proce-
dures). As you might guess, this method
won’t work for classes that expose their
properties through Public variables instead
of property Let and Get procedures (but you
don’t do that in your code, right?).
Now you’ve seen a way to replicate
information between databases using a
simple and effective class persistence tech-
nique. The FileSave and FileLoad class
methods are the key, storing the proper-
ties of a class in UDTs, allowing a quick
and easy way of persisting the properties
to files for later retrieval. You can ex-
change these files easily between comput-
ers to provide a simple form of data repli-
cation. Another use would be to store the
files as backups of database records or
even of database transactions. You could
use the transaction files to build an offline
or backup copy of the database if desired.
Your imagination is the limit. VBPJ
DBLoad = True
DBLoad_Exit:

Set rs = Nothing
Set cm = Nothing
Exit Function

DBLoad_Error:
Call RaiseError(Err, mk_sClassName & ": DBLoad method" & "/" & _

Err.Source)
Resume DBLoad_Exit

End Function
73

	Code

