
74

BEGINNER
GETTING STARTED

Use VB6’s new WebClass technology to easily build
flexible and powerful Internet applications.

by Stan Schultes
and Chris Barlow

WebClasses Make
Registration Easy

WHAT YOU NEED

VB6 Professional
 or Enterprise

 Edition

NT Server with
 IIS 4 or Windows

 95/98 with
 Personal Web

 Server V3

Access 97
 Database

Microsoft
 Data Access
 Components

 1.5 or 2.0
product [“Create a User Registration Class,” VBPJ
April 1998, and “Add E-Mail Registration to Your
Server,” VBPJ May 1998]. After registration, the app
sends a serial number back to the user by e-mail, as
well as a link to the Web server to continue the
registration process. This VB5 application we dem-
onstrated for you earlier creates an ActiveX DLL that
runs on the Web server, and a companion Active
Server Pages (ASP) script that determines the user’s
state and calls the DLL appropriately. Now VB6
offers a fresh approach to programming this type of
application using a new technology called WebClasses.

WebClasses, in a nutshell, are ActiveX DLLs that
run on a Web server. WebClasses allow hyperlinks on
an HTML page in the client-side browser to fire events
in the server DLL. The WebClass programming model
is similar to the traditional VB model—instead of a
form that contains controls, the WebClass application
features a Web page that contains controls. The full VB
event model is exposed to the developer on the server
side, allowing a highly interactive style of Web devel-

E arlier this year, we showed you how to write a
registration application that allows a user to
visit your Web page and register a software
opment. In this column, we’ll walk through the con-
struction of a simple WebClass application, showing
you how easy it is to get started.

To create a simple WebClass application, start VB6
and select IIS Application from the New Project dialog
box. Name the project SimpleReg in the Properties
window. Double-click on the WebClass1 designer in
the Project Explorer window (you can see both the
Properties window and Project Explorer through VB’s
View menu). In the Properties window, name the
WebClass wcSimple, and enter SimpleReg in the
NameInURL property. This creates a special startup file
called SimpleReg.asp when the ActiveX DLL is com-
piled. Now save the project.

A WebClass application displays HTML on the
user’s browser through the use of HTML templates.
Because VB6 doesn’t include an HTML editor, you
must create the templates outside VB (the VB6
DHTML Designer is completely unrelated to
WebClasses). You can use any HTML editor, but
because Visual Studio includes Visual InterDev (VID)
6.0, VID is a logical choice.

Make Visual InterDev the default HTML editor for
Visual Basic by going to VB6’s Tools | Options menu.
w

On the Advanced tab, fill in the
External HTML Editor box with
this path to Visual InterDev:
C:\Program Files\Microsoft Visual
Studio\Common\IDE\IDE98\
Devenv.exe. You’ll notice that
Visual InterDev creates copies of
the template files used in your
project. For example, if your
template is called WebPage.htm,
InterDev creates a copy named
WebPage1.htm. Be aware of this if
you edit your template with Notepad
or another editor.
Figure 1 WebClass Designer. Add an HTML template to the project using the WebClass
Designer. Either click on the Add Template button (above the ToolTip), or right-click on the HTML
Template WebItems folder and select Add HTML Template… from the context menu.
ww.vbpj.com • VBPJ DECEMBER 1998

In the sample code, the SimpleReg.htm file is a
template created with Visual InterDev. Select the
HTML Template WebItem folder in the left-hand
pane of the WebClass designer. Add the SimpleReg
template to the project by clicking on the Add HTML
Template WebItem button and selecting
SimpleReg.htm in the file dialog (see Figure 1).
Name this new WebItem tplSimple. Double-click on
the tplSimple WebItem to view the code for the
WebClass. Find the WebClass_Start procedure and
replace the generated code with this code to display
the template when the WebClass loads:

Private Sub WebClass_Start()

'Display the main HTML template

Session("Title") = "Enter Your " & _

"Registration Information"

tplSimple.WriteTemplate

End Sub

The WebClass_Start procedure is similar to the
Form_Load procedure in a traditional VB applica-
tion. Run the project and watch your browser display
the template HTML page. Exit the browser and stop
the VB application (this is the normal way of shutting
down a WebClass application during the debug/
development process).

In the WebClass designer, right-click on the
tplSimple WebItem and select Edit HTML Tem-
plate… from the context menu. You will see the
template page in your default HTML editor. Looking
at the source code, you can see this is a simple page
with three special HTML elements called tags, for-
matted like this:

<WC@TAGTITLE>Title</WC@TAGTITLE>

The text portion of these tags (“Title”) is replaced
at run time by code you add to the WebClass. When
the WriteTemplate method executes, it calls a special
procedure named ProcessTag once for each tag found
in the HTML template. Back in VB, double-click on
the tplSimple WebItem to display the Code window.
Select the tplSimple_ProcessTag procedure from the
comboboxes at the top of the code window, and add
this code:

Dim sHTM As String

Select Case TagName

Case "WC@TAGTITLE"

TagContents = Session("Title")

Case "WC@TAGEMAIL"

sHTM = "Enter Email Address:
"

sHTM = sHTM & "<input type='text'"

sHTM = sHTM & " name='Email'>
"

TagContents = sHTM

Case "WC@TAGNAME"

sHTM = "Name:
"
VBPJ DECEMBER 1998 • www.vbpj.com␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
sHTM = sHTM & "<input type='text'"

sHTM = sHTM & " name='Name'>
"

TagContents = sHTM

End Select

Passing back HTML code in the TagContents
parameter makes the tag replacement. Set a breakpoint
at the tplSimple.WriteTemplate line in the
WebClass_Start procedure, and run your application.
At the breakpoint, single-step the project using the F8
key to see the order of events. You can see the ProcessTag
procedure is called three times—once for each tag in
the template. What is really cool is that the procedure
replaces the E-mail and Name tags at run time with
HTML code that generates textboxes on the browser.

The ability to interactively debug your server-side
event code illustrates one of the most powerful capa-
bilities of WebClass application development with
VB. In VB5 Web development, VBScript in an ASP
script does a lot of the work. It is not possible to debug
VBScript in an ASP script interactively—trial and
error is unfortunately the only solution. With VB6,
however, all server-side code runs in the WebClass,
and you can interactively debug it using VB’s excel-
lent design environment.

Connecting an Event
The next step in this simple application is to add event-
handling code for the Register Me button on the form.
Back in VB’s WebClass designer, click on the tplSimple
WebItem. In the right-hand pane, you’ll see a list of the
HTML elements on the page to which you can attach
events. Right-click on the Form1 tag and select the
Connect to Custom Event menu item. Name the added
event RegisterMe, and notice the event name in the
Target column next to Form1. Take a quick look at the
HTML template (right-click on tplSimple and select
Edit HTML Template). Find the form element, which
now looks like this:

<FORM method='post' _

action=SimpleReg.ASP?WCI=tplSimple _

&WCE=RegisterMe&WCU>

SimpleReg.asp is the special ActiveX DLL startup
script. The values after the question mark indicate the
WebClass Item (WCI) is tplSimple, the WebClass
Event (WCE) is RegisterMe, and the WebClass
URLData (WCU) is empty. When the user clicks on
the Register Me button in the browser, this line makes
the tplSimple_RegisterMe event fire in the ActiveX
server DLL. In this case, the form action is connected
to a server-side event, but you can set any hyperlink
in the browser to fire an event on the server. WebClasses
bring magic to Web application development—they
extend VB’s event-driven style of programming to
browser-based applications.

Double-click on the RegisterMe event in the left-
Chris Barlow’s Getting
Started column, “Create a
User Registration Class,”
VBPJ April 1998.

Chris Barlow’s Getting
Started column, “Add E-
Mail Registration to Your
Server,” VBPJ May 1998.

RESOURCES

For an introduction to
WebClasses, read the
article by Sean Alexander
of Microsoft at http://
msdn.microsof t .com/
developer/news/feature/
vb6 jun98/wbc lsprmr .
htm.

LINK
75

BEGINNER
GETTING STARTED

76

About the Authors

tan Schultes is the lead developer at
unOpTech, where he is responsible for
evelopment and worldwide support of the
bjectBank and ObjectOrder products. Stan
olds a degree in computer engineering
rom Purdue University. Reach Stan at
tan@VBExpert.com.

Chris Barlow is president and CEO of
unOpTech, a developer of manufacturing
ecision-support applications. Chris holds
egrees from Harvard Business School and
artmouth College, where he worked with
rs. Kemeny and Kurtz on the Basic lan-
uage. Reach Chris at Chris@VBExpert.com.

Download the code for this issue of
VBPJ free from http://www.vbpj.com.

To get the free code for this entire
issue, type VBPJ1298 into the Loca-
tor+ field at the top right of the VBPJ
home page. (You first need to register,
for free, on DevX.) The free code for
this article includes all code listings,
plus the code to build a simple
WebClass app.

To get the bonus code for this article,
available to DevX Premier Club mem-
bers, type VBPJ1298GS into the Loca-
tor+ field. The bonus code includes all
the free code described above, plus a
VB6 rewrite of the user registration
application discussed in the April and
May Getting Started columns. The au-
thors converted the app to an event-
driven, server-side application using
WebClasses from a server-side ASP
script with a helper DLL.

DOWNLOAD FREE CODE
hand pane of VB’s WebClass designer to show
the Code window. Add this code to the event:

If Len(Request.Form("Email")) = 0 Then

Session("Title") = "Please " & _

"Enter an Email Address!"

Session("Email") = ""

Session("Name") = ""

Else

Session("Title") = "Here is " & _

"your Entry!"

Session("Email") = _

Request.Form("Email")

Session("Name") = _

Request.Form("Name")

End If

tplSimple.WriteTemplate

Request.Form is the standard way of re-
turning posted data from a browser page.
Request.Form sets several Session variables
and redisplays the same template HTML
page. Set a breakpoint on the If statement and
run the project. Enter an e-mail address and
name, and click on the RegisterMe button.
You’ll see the Title field update, but the
textboxes appear empty because you didn’t
put a value into them when you wrote the
template. Stop the project and change the
tplSimple_ProcessTag procedure (download
Listing 1 from DevX; see the Download Free
Code box for details). Give the textboxes
values based on the Session variables. Run the
project again and see what happens.

Database Access Using ADO
Finally, add a way to store and retrieve records
from a database. For simplicity, we used
Microsoft Access 97 as the database. Create a
new database in your source directory with
Access and name it Register.mdb. Add a table
with two fields, Email and Name, and save
the table as Users. Choose OK when Access
prompts you to create a unique index field.
Put a copy of Register.mdb in the root direc-
tory of your C drive (c:\).

In the project, add a reference to Microsoft
ActiveX Data Objects Library, which you
can find under Project | References…. You
can use either the ADO Library 1.5 or 2.0. If
you don’t have the ADO Library installed,
you can download the MDAC 2.0 setup kit
from Microsoft at http://www.microsoft.
com/data/ado. Change the code in the tplSim-
ple.RegisterMe procedure (download List-
ing 2 from DevX; see the Download Free
Code box for details).

This code saves the form data into Ses-
sion variables, then opens an ADO recordset
and searches for the e-mail address (down-
load Listing 3 from DevX).

If found, the code returns the record. If
not found, it adds a new record. This func-
tion sets the connect string:

Private Function Connect() As String

'returns an ADO connect string

Const kDB = "DBQ=c:\register.mdb;"

Const kDrv = "Driver={Microsoft" & _

"Access Driver (*.mdb)}"

Connect = kDB & kDrv

End Function

Set a breakpoint in tplSimple_
RegisterMe, run the project, and see how the
data access code works. This simple example
should show you how easy it is to program in
ADO. Keep in mind that any “real” applica-
tion you deploy in your company would
include error handling. You would also nor-
mally use the registry to store variables such as
connect string information, and you would
need to provide a way to update existing
records and delete unwanted records.

Once you compile the project, two things
happen. First, the created ActiveX DLL regis-
ters on the development machine, as with any
ActiveX project in VB. Second, a special startup
ASP file is created with the name specified in the
NameInURL property of the WebClass. In the
sample application, this file is named
SimpleReg.asp. Take a look at this script with
Notepad. When the user enters the URL of this
file in the browser, IIS executes this script to
create an instance of the SimpleReg.wcSimple
WebClass. Microsoft recommends you not
change this ASP script in any way.

From the user’s standpoint, the WebClass
version of the registration application works
similarly to the one shown in the May 1998
column. Much of this column’s actual code
is similar to that shown in the prior column,
except all the code is now included in a
WebClass, and the startup ASP file doesn’t
include any user code.

Heed Caution
Before Rushing Out
You should now have a solid understanding
of how WebClasses work from this real-
world comparison of a before-and-after ap-
plication. You still might not want to rush
out and convert all your existing Web appli-
cations to WebClass projects, however. Con-
verting an application requires a lot of time,
so you should do this only if there is a

S
S
d
O
h
f
S

S
d
d
D
D
g

t
s
w

p
m
i
p
g
i
g
l
e
p
t

angible business benefit. WebClasses allow
ome applications to be built or extended in
ays not possible before, for example.

In the end, Microsoft has given us a
owerful new toolset to use in the develop-
ent of Internet applications. While build-

ng Web applications with VB5 is certainly
ossible, you must resort to a lot of pro-
ramming tricks to get the ASP scripts to
nteract properly with VB DLLs. With VB6,
one are the limitations of VBScript and the
ack of a true event-driven programming
nvironment. WebClasses bring the full
ower of VB to Web development—a good
hing indeed. VBPJ
www.vbpj.com␣ ␣ ␣ ␣ •␣ ␣ ␣ VBPJ DECEMBER 1998

