BEGINNER

GETTING STARTED

erve Data to Your Clients

It’s simple to use a
Web-server method
to share information

across systems.

Click & Retrieve

Source

CODE!

Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-supportapplications, including the
ObjectBank and ObjectJob systems. Chris
holds degrees from Harvard Business
School and Dartmouth College, where he
worked with Drs. Kemeny and Kurtz on the
Basic language. Reach Chris by e-mail at
Chris@VBExpert.com.

Stan Schultes is lead developer at
SunOpTech, where he is responsible for
development and worldwide support of the
ObjectBank and ObjectOrder products. Stan
has 20 years of experience in the computing
field, most spent with a Fortune 200 com-
pany, where he developed manufacturing
systems and was a corporate technology
consultant. Stan holds a degree in computer
engineering from Purdue University. Reach
Stan at Stan@VBExpert.com.

by Stan Schultes and Chris Barlow

between systems in your enterprise. For example, you've probably heard the

”

ﬂ s a VB developer, you frequently hear terms that describe how data is shared

terms “client/server,” “three-tier,” and “n-tier.” Don’t be confused by terminol-
ogy—these words simply describe how applications are partitioned and how they
communicate with one another, such as passing data between parts of an application
that might run on more than one computer. With all the hype surrounding these terms
and all the potential ways of sharing data, how do you get started?

As with most programming tasks, you can share information between systems in
many ways. Each method has its pros and cons, and each can work in different
applications, depending on what you want to accomplish (see Table 1). At my
company, SunOpTech, we build Windows-based, enterprise-class information and
decision-support systems. The architecture of several of SunOpTech’s systems uses
temporal, append-only databases to store data. This architecture time-stamps and
stores transactions in local databases that keep all transactions over time. The
database therefore contains the complete history of any activity.

The key to implementing the temporal database is guaranteeing that each database
update occurs in the proper order. While this is straightforward in a single database,
the process quickly becomes complex when transactions simultaneously occur on
multiple servers located around the world. When the data is replicated between
servers, how can you be sure the transactions are properly ordered?

SunOpTech uses a common time-base approach across locations. Time-stamps
generated for all transactions are in Universal Coordinated Time (UTC), also known as
Greenwich Mean Time. With UTC, you can reference any transaction to any other using
the same time system, no matter where and when in the world the two transactions
occurred. Servers in different locations synchronize their time to a common time base
on the Internet using one of the various Internet time protocols (for more information,
see http://www.eecis.udel.edu/~mills/ntp/servers.html).

So, what’s the best way to share information across systems? Microsoft provides a
Windows API call, NetRemoteTOD (in NetAPI32.dll), that retrieves the time from another
machine across the network. Unfortunately, Microsoft has included this Win32 API function
only on Windows NT—you won't find it in either Windows 95 or Windows 98. So, only your
clients using Windows NT can use this system call.

Method Pros Cons

Windows API Calls Very fast Might not be supported on all platforms

DCOM Flexible Might be difficult o configure

Web Server Available everywhere Might not be able to implement consistently
across products

Sockets Services common across platforms Difficult to program without third-party tools

Bundled with NT

Guaranteed delivery with
multiple dients

Easy fo set up and use

Microsoft Transaction Server (MTS) More difficult to configure

Microsoft Message Queve (MSMQ) Still early in release cycle

Third-Party Tools Might pay license fees or royalfies

T] Sharing Information Between Systems. Microsoft Windows offers a number of
ABLE : .
methods to share information between systems. Here are some of the pros and cons.

http://www.devx.com I

Visual Basic Programmer’s Journal AUGUST 1998 87

BEGINNER

GETTING STARTED

I'll show you how to solve this problem

using the Web-server approach, but it’s

TimeText. exe TimeServerdi only one of several ways of getting the job

done. This approach is simple to imple-

CNetTime.cls CNetTime.cls calls ment, reasonably accurate, and based on

B A7) technology that most VB shops already

have in place (see Figure 1). The client

software uses the Winlnet API to request

the time from a Web server common to the

local clients. The server, running Microsoft’s

Internet Information Server (IIS), executes

GetNetTime() an Active Server Pages (ASP) script that

function : calls a time-service ActiveX DLL to return

Wininetdl APl | Web commection |':]’If'grr%2‘ii%[|]";rrr\],?r TimeServer.asp th.e time of the current server in .UTC. The

calls requesting (11S) client simply parses thereturned time string
TimeServer.asp to get the time-stamp information.

This solution is simpler and more flex-

ible than other methods. It allows a client

Web Server Overview. A Web server is the basis for communicating between | applicationtoconnecttotheserverthrough

systems. The Web serverreturns the system time in Universal Coordinated Time | an Internet (or intranet) connection, re-

(UTC) to the client. gardless of how the connectionis made and

Option Explicit

'Copyright © 1992-1998, SunOpTech®, Ltd., A1l Rights
'Reserved

'Class Name: cNetTime (NetTime.cls)

'Class Description: Network Time class

'Author: Stan Schultes

'‘Date Created: 4/30/98

'‘private class members
Private m_iMSec As Integer

'Internet connection declarations

Private Const INTERNET_OPEN_TYPE PRECONFIG = 0

'uses Registry config info

Private Const INTERNET_FLAG_EXISITING_CONNECT = _
&H20000000

Private Const INTERNET_FLAG_RELOAD = &H80000000

Private Declare Function InternetOpenUrl Lib _
"wininet.d11" Alias "InternetOpenUrlA"™ _
(ByVal hInternetSession As Long, _
ByVal 1pszUrl As String, ByVal 1pszHeaders As _
String, ByVal dwHeadersLength As Long, ByVal _
dwFlags As Long, ByVal dwContext As Long) As Long

Alias “InternetOpenA” (ByVal sAgent As String, _
ByVal TAccessType As Long, ByVal sProxyName As _
String, ByVal sProxyBypass As String, ByVal 1Flags _
As Long) As Long

Private Declare Function InternetReadFile Lib _
"wininet.d11" (ByVal hFile As Long, ByVal sBuffer As _
String, ByVal TNumBytesToRead As Long, _
TNumberOfBytesRead As Long) As Integer

Private Declare Function InternetCloseHandle Lib _
"wininet.d11" (ByVal hInet As Long) As Integer

Public Function GetNetTime(URL As String)

'returns the Server Time via HTTP, sets other properties
Dim sBuffer As String * 4096

Dim sReturn As String

Dim TNumBytes As Long

Dim 1Session As Long

Dim 1File As Long

Dim bReadOK As Boolean

1Session = InternetOpen("NetTime", _
INTERNET_OPEN_TYPE_PRECONFIG, _
vbNu1l1String, vbNullString, 0)

Private Declare Function InternetOpen Lib "wininet.d11" _

1File = InternetOpenUrl(1Session, URL, vbNullString, 0, _
INTERNET_FLAG_EXISITING_CONNECT Or _
INTERNET_FLAG_RELOAD, 0)
If 1File Then
Do
bReadOK = InternetReadFile(1File, sBuffer, _
Len(sBuffer), TNumBytes)
If TNumBytes Then
sReturn = sReturn & Left$(sBuffer, TNumBytes)
End If
Loop While bReadOK And 1NumBytes > 0
InternetCloseHandle (1File)
If Len(sReturn) Then
'get time as variant date & fill Milliseconds
GetNetTime = ParseTime(sReturn)

Else
'log error & get time locally
End If
Else
'log error & get time locally
End If

End Function

PubTic Property Get Milliseconds() As Integer
Milliseconds = m_iMSec
End Property

Private Function ParseTime(ASPReturn As String) As Date
'parses time values out of string returned from ASP
Dim iPos As Integer, iPos2
Dim sTimeStr As String
If Len(ASPReturn) Then
'find the TimeUTC & EndTime values in the returned
'string
iPos = InStr(UCase$(ASPReturn), "TIMEUTC=")
iPos2 = InStr(UCase$(ASPReturn), "=ENDTIME")
If iPos Then
'sTimeStr will be in form “5/1/98 16:43:18 PM,789"
' where 789 is the number of Milliseconds
sTimeStr = Mid$(UCase$(ASPReturn), iPos + 8, _
iPos2 - iPos - 8)
iPos = InStr(sTimeStr, ",")
ParseTime = CDate(Left$(sTimeStr, iPos - 1))
m_iMSec = CInt(Mid$(sTimeStr, iPos + 1))
End If
Else
ParseTime =
m_iMSec = 0
End If
End Function

0

LisTiNG 1 NetTime Class. This class is the core of the client end of this example. It encapsulates the Winlnet calls and parses the HTML
returned from the server-side ASP script. Time in UTC is returned by GetNetTime(), and the Milliseconds property is set.

88 AUGUST 1998 Visual Basic Programmer’s Journal

http://www.devx.com I

where the two ends are located. It also
works with any Windows 32-bit operating
system—Windows 95, Windows 98, NT3,
NT4, or NT5—on both the client and server
end, without any fancy footwork.

You can download the code from the
free, Registered Level of The Develop-
ment Exchange (see the Code Online box
at the end of the column for details). I'm
assuming you’re running IIS and that you
have the privileges to register an ActiveX
DLL and put an ASP page on the Web
server. For demonstration purposes, you
can do this on a Win95 machine using the
Microsoft Personal Web Server. If you
don’t have these privileges, you can try
out the client portion of the code and set
it to access the time server set up at http://
www.vbexpert.com/timeserver.asp.

AND NOW FOR THE CODE

This sample code features three parts. To
build this component, you need either
the Professional or Enterprise Edition of
VBS5. Starting with the server end, you use
an ActiveX DLL with one method and one
property. The GetServerTime Method re-
turns a Variant of type Date representing
the server’s current time as a UTC value.
The Milliseconds property provides away
of getting more than one second of reso-
lution from the DLL.

Start by creating an ActiveX DLL
project, and call it TimeServerDLL. Name
the default class CServerTime and add
this code to the Declarations section:

Option Explicit

Private Type SYSTEMTIME
iYear As Integer
iMonth As Integer
iDayOfWeek As Integer
iDay As Integer
iHour As Integer
iMinute As Integer
iSecond As Integer
iMilliseconds As Integer

End Type

Private Declare Sub GetSystemTime Lib _

ﬂ http://gmtimeserver. asp - Microsoft Internet Explorer M= =

"kernel32" (pSystemTime As _
SYSTEMTIME)
Private m_iMSec As Integer

This declares the GetSystemTime Win32
APl callto VB and defines the SYSTEMTIME
data structure filled by GetSystemTime.
The m_iMSec variable is a private class
member that stores additional time resolu-
tion as milliseconds. Next, add the public
function GetServerTime, which handles the
main task of the class:

Public Function GetServerTime()
'Returns the Server time as a variant
'Date value, and sets the Millisecond
'property
Dim pTime As SYSTEMTIME
Dim vDateTime As Variant
GetSystemTime pTime
'API call for time from the server
'DateSerial and TimeSerial return
'Variant Dates
vDateTime = DateSerial(_
pTime.iYear, pTime.iMonth, _
pTime.iDay) + TimeSerial(_
pTime.iHour, pTime.iMinute, _
pTime.iSecond)
m_iMSec = pTime.iMilliseconds
GetServerTime = vDateTime
End Function

Finally, add a read-only property to
return the milliseconds value. A read-
only property has only the Property Get
procedure, omitting the Property Let:

Public Property Get Milliseconds() _
As Integer
Milliseconds = m_iMSec

End Property

Yes, that’s allit takes to createan ActiveX
DLL that returns the server’s time in UTC.
Now, build the DLL, specifying the filename
as TimeServer.dll in the Make Project dia-
log box. When you're done, copy the DLLto
the server into path c:\winnt\system32.
Replace this path with the server’s Win-

BEGINNER

GETTING STARTED

dows System directory name. Register the
DLL on the server using RegSvr32. The
simplest way of doing this is to use the
Windows Run command under the Start
menu, and typethis codeinthe combobox:

RegSvr32 timeserver.dll

VBSCRIPT IN THE MIDDLE

Active Server Pages are extensions to your
Web server that allow a scripting language
to execute on the server side of your Web
connection. This scripting language (the
default is VBScript) allows you to create
custom, dynamic content easily on your
Web pages without exposing the code you
use to generate the HTML output. Create
the TimeServer.asp file with these lines:

<%

'** TimeServer.asp-VBPJ Getting

'**Started, August, 1998**

Set ts = Server.CreateObject(_
"TimeServerDLL.cServerTime")

%>

TimeUTC=<% =ts.GetServerTime %>,<% _
=ts.Milliseconds %>=EndTime

This simple VBScript does the job
efficiently. The <% and %> symbols delin-
eate VBScript that runs when the page is
accessed—telling the server to execute
this code to create the HTML page re-
turned to the client. Variable ts is set as a
reference to the TimeServer DLL. In the
lastline, =ts.GetServerTimereturns a Vari-
ant Date that appears as aformatted date
string, and =ts.Milliseconds returns an
integer. TimeUTC=, the comma, and
=EndTime appear as text and are used for
parsing on the client end.

Put the TimeServer.asp file on your Web
site. For demonstration purposes, I put mine
into d:\inetpub\wwwroot—my root Web
sitefolder. To test your new ASP script, start
your favorite browser and enter the URL
http://myserver/timeserver.asp, where
“myserver” is replaced by the name of your
Web server (seeFigure 2). The first time you

isi. TimeServer Test M=] E3

Enter the URL to your A5F page, then click Get Time

Ihttp: SfamAimezerver asp

|5,.-'4,.-'58 1:48:19 PM

Get Time

J Fil= Edit “iew Go Favortes Help |
] S] A | Q

Back Eorard Stop Refresh Home Search Fawvortes
JAddress I hittp: /fmypzervertimeserner. asp ﬂ |J Linkz LRL

_ _ =

TineTTTC=5/4/98 7:57:15 PI, 290=EndTime :
Timne
=l kSec I?-I o

I_I_I_ |§'g Local intranet zone

%

E it

m Browser Returns Value. Internet Explorer4 displays
the time string returned from the TimeServer.asp

script on the Web server.

m TestHarness at Work. The TimeTest program provides
a simple test host for the NetTime class. It displays the
results returned from a request for system time from the Web server.

http://www.devx.com I

Visual Basic Programmer’s Journal AUGUST 1998 89

BEGINNER

GETTING STARTED

request this page, you’'ll experience a slight
delay while the DLL loads. If you refresh the
page, it quickly returns the new time string.
Afterthelastaccess,lISkeepstheDLLIoaded
for 30 minutes or so by default to improve
the response of successive requests.

Now it’s time for the client code. It
uses the Winlnet API (in Winlnet.dll) to
communicate between a VB program and
a Web server, so it’s the most complex
part of the example.

Themeat of the client-application code
is NetTime.cls—a class that wraps the
Winlnet functionality. Start by opening a
new standard EXE project, adding a class,
and naming it NetTime. Save the project
as TimeTest.vbp (see Listing 1). The dec-
larations in the class header make four
WinlInet functions available to the VB pro-
gram. Public function GetNetTime does
the bulk of the communication work to
the server with this code fragment:

1Session = InternetOpen("NetTime", _
INTERNET_OPEN_TYPE_PRECONFIG, _
vbNul1String, vbNullString, 0)

1File = InternetOpenUr1(1Session, URL, _
vbNull1String, 0, _

INTERNET_FLAG_EXISITING_CONNECT Or
INTERNET_FLAG_RELOAD, 0)

If 1File Then
Do

bReadOK = InternetReadFile(_
1File, sBuffer, _
Len(sBuffer), TNumBytes)
If TNumBytes Then
sReturn = sReturn & _
Left$(sBuffer, 1NumBytes)
End If
Loop While bReadOK And 1NumBytes > 0
InternetCloseHandle (1File)
'{code omitted - see Listing 1}
End If

First, an INet connection is initialized
with InternetOpen, then the Inter-
netOpenURL function specifies the ASP
page address. Note the use of the INTER-
NET_FLAG_RELOAD value, which guaran-
tees that a new time value comes back on
each request. The InternetReadFile func-
tion is called repeatedly until the HTML
stream returned by the ASP page is ex-
hausted. To finish the session, the INet
handle is closed with InternetCloseHandle.

Next, the ParseTime function pro-

cesses the HTML stream returned from
the ASP page. ParseTime finds the time
string, first looking for the “TimeUTC="
and “=EndTime” markers, then looking
for the comma separating the time value
from the milliseconds value. ParseTime
returns the time value as a Variant Date
and sets the Milliseconds property.

BUILD A TEST HARNESS

Testing the NetTime class is easy. On the
Forml default form in the TimeTest
project, add three text boxes and a com-
mand button (see Figure 3). The URL for
TimeServer.asp goes into Textl, Text2
displays the time value, and Text3 dis-
plays the milliseconds value. Put this
code in the Command]1_Click function:

Private Sub Commandl Click()
Dim nt As New CNetTime
Text2 = nt.GetNetTime(Textl)
Text3 = nt.Milliseconds

End Sub

The ntvariable is declared to be a new
object of type CNetTime. Executing the
GetNetTime function with the URL of the
ASP script should return a time value. Try
clicking several times in successionto see
thetimevalue change. The CNetTime class
is asource component that you can reuse
in any project that needs to obtain the
time from a common server machine.

Now that you've seen how easy it is to
write client code to request information
from your Web server using ASP, think of
what else you can do with this technique.
For example, you can easily implement a
disk-space monitor across a number of
machines. Write the ActiveX DLL to return
total and free disk space from the drives on
the machine by using another Windows
API call. You can collect disk space from a
network of computers monitored by a cen-
tral application. Each monitored machine
needs a Web server, the registered DLL,
and an ASP script that calls the DLL. X

Code Online

You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.vbpj.com. For details,
please see “Get Extra Code in DevX’s Premier
Club” in Letters to the Editor.

Serve Data to Your Clients

Locator+ Codes

Listings for the entire issue, plus the code
associated with this column (free Registered
Level): VBPJ0898

¢y Listings for this article only, the code
mentioned above, plus two extra samples
(Windows Sockets and DCOM) and a text
document that helps with setup (subscriber
Premier Level): GS0898

90 AUGUST 1998 Visual Basic Programmer’s Journal

http://www.devx.com I

	Code

