BEGINNER

GETTING STARTED

Track Code Changes

Create an add-in to
flag changes with
programmers’ initials
and change date.

Glicks& Retrieve

ource

CODE!

Chris Barlow is president of SunOpTech, a
developer of document-management, deci-
sion-support, and supply-chain applications,
including the ObjectBank, ObjectOrder, and
ObjectJob Systems. He holds two U.S. Pat-
ents related to software for decentralized
distributed asynchronous object-oriented
and scheduling systems. Chris, who is a
frequent speaker at VBITS, TecheEd, and
DevDays and has been featured in two
Microsoft videos, holds degrees from
Harvard Business School and Dartmouth
College. Reach Chris at Chris@VBExpert.com
or through his Web server at http://
www. VBExpert.com.

by Chris Barlow

to procedures or applications that you or someone else in your organization

wrote a while ago. Maintaining a growing code base of existing applications
can be one of the most time-consuming and error-prone activities of a software
development organization. To make this process flow more smoothly at my company,
we instituted coding standards so each code change is flagged with the programmer’s
initials and change date. This standard has made it easier to track changes to the code
base or discuss a prior change with the person who made it.

When you make multiple changes to a programin a single session, it takes discipline
to type “CRB 05/15/98” with each change. It’s easy to skip this step and go on to the
next code change with the rationalization that it’s only a minor change or that you'll
come back and enter your initials later, after you've debugged the code. Predictably,
you never get back to flag the change. Too bad Visual Basic doesn’t have an option to
insert your initials at the press of a toolbar button. What was Microsoft thinking?

But wait! Microsoft was thinking after all—the entire Visual Basic integrated
development environment (IDE) is extensible through add-ins. Any COM object that
implements the IDTExtensibility COM interface can hook into the IDE and seamlessly
extend the development environment.

Add-ins were available in Visual Basic 4.0 in a limited manner, but with version 5, you
can create more meaningful add-ins. For more details, take a look at Francesco Balena’s
article, “Roll Your Own Add-Ins” [VBPJ August 1997] and Sam Patterson’s COMponent
Builder columns, “Add-Ins Save You Time, Effort” [VBPJ July 1997] and “Add Some Zip
to Your Add-Ins” [VBPJOctober 1997]. Despite these resources, my e-mail indicates that
many people think writing an add-in is over the head of someone getting started with
Visual Basic. Not true! You can write an add-in that marks your changes by inserting your
initials, along with the date and time, directly into your Visual Basic code window with
fewer than 20lines of code.Inthe process, you’lllearn about the IDE’s extensibility object
model and how to add an icon for your add-in to one of Visual Basic’s toolbars.

Let’s get started. You need VB5 to work with the code for this column. You can download

ﬂ s you do more Visual Basic programming, you find yourself making changes

the complete code for
this app from the free,
Registered Level of The
Development Exchange
(seetheCodeOnlinebox
for details), but with a
project this small, it'’s a
great learning experi-
ence to start from
scratch (see Listing 1).
Start a new ActiveX Vi-
sual Basic project and
change the name of the
class module to Con-
nect. Select Project Ref-
erences and add arefer-
ence to Microsoft Visual
Basic 5.0 Extensibility
(which contains the
IDTExtensibility COMin-
terface) and to the

%, Insertinitials - Microsoft Visual Basic [run] - [Connect [Code]]

&% File Edt Wiew Project Format Debug Run Took Add-Ins Window Help
- [0} I om| H
b Ty i A

=] [oniex]

‘ MenuHandler

(General)

IClass

b CommandBarEvents

Private wInitials As String

Private Sub IDTExtensibility OnConnection(ByVal VBInst As Chject,
Set VEBInstance = VEInst

Set mebMenuCommandBar = AddTolddInCommandBar ("Insert Initials'")
Set Me.MenuHandler = VBInst.Events.CommandBarEvents (mchMenuCommand
mlnitials = GetSetting(ipp.Title, "3ettings"”, "Initials"™, ")

End Sub

Private Sub IDTExtensibility OnDisconnection(ByVal RemoveMode As w

On Error Resume Next
-
== « »

mehMenuCommandBar . Delete
m Connect Class. When you implement a COM inter-
face or declare an ActiveX component With-

FEvents, your code window shows additional objects where you
can add code.

72 JUNE 1998 Visual Basic Programmer’s Journal

http://www.windx.com I

Microsoft Office 8.0 Library (which contains
the Visual Basic menus and toolbars as Of-
fice CommandBar objects). Change the
Project name to Insertlnitials. Type in these
five lines of code:

Implements IDTExtensibility

Public WithEvents MenuHandler As _
CommandBarEvents

Private VBInstance As VBIDE.VBE

Private mcbMenuCommandBar As _
Office.CommandBarControl

Private mInitials As String

The first line shows that this COM object
(remember, you are creating an ActiveX
EXE, which is a COM object) will implement
the Visual Basic IDE extensibility interface.
The second line sets MenuHandler as the
procedure that will respond to the events of
the CommandBar object, such as a mouse
clickonatoolbaricon. TheWithEvents state-
ment, newto VB5, lets yourespondto events
inanother ActiveX object. The MenuHandler
procedure needs to be Public because the
VB IDE calls it when the user clicks on your
toolbar button. The third line saves the in-
stance of VB that is passed to your add-in.
The fourth line saves a reference to the

BEGINNER

GETTING STARTED

toolbar where you add an [o=
iconforyour add-in,soyou % Fie Edt Yiew Profect Format Debug Run Tools Addns Window Help =& x|
can remove the icon if the |/ 8- 1 &FH > MEoEAE
A DBl = a0
user unloads the add-in. Fi- = — , o
. oottt =] 4 | 7]
nally, the last line stores | _senes | i ==
the user’s initials. k ! X e . : =533 InsertInitials {INGERT~1.VBP
. A [Classes Members of ‘Connect’ =54 Modules
Look at the code win- bl o <giotals © AddToAddinCommandBar W4 addin (Addn.bas)
T |+ Addin & ID ibility_O1 b =53 Class Modules
dow for your Connect 3 Carneci & D Ertonsibikty_OnConmecisy 23 Connect (Cornect.ck)
class (see Figure 1)_ In e = IDTExtensibility_OnDisconnec
addition to the normal HenbariCitons
qu & .
General and Class items |*” = nane: | connact
. . = Descripti
in the Object combo % - paati Cancel
box, the IDTExtensibility | = = . .
~ Help File: Help Context 1D
f'md Men.uHandler ob- g [Gaescomo o Help
jects are listed. Hereyou |- e —
add code to implement i

the IDE’s COM interface
and handle a click on
your toolbar icon. Re-
member, a COM object
that implements a COM
interface must implement all the proper-
ties and methods of that interface. Click
on the IDTExtensibility object, then click
on each of the four items in the Proce-
dure combo box. These four items are
the only methods of this COM interface.
Although all procedures must be present
in your class, you need to add codeonly

Class Description. The Add-In Manager displays the
class Description property—but it’s hard to find out
where to change that description. You can only change it from the
Object Browser by right-clicking to display the class properties.

to the OnConnection and OnDiscon-
nection methods.

The IDTExtensibility_OnConnection
method is called when Visual Basic instanti-
ates your add-in—either because the user
selected it from the list of available add-ins,
or because the user selected it the last time
Visual Basic was run, causing it to load again

http://www.windx.com I

Visual Basic Programmer’s Journal JUNE 1998 73

BEGINNER

GETTING STARTED

Option Explicit
Implements IDTExtensibility

Private VBInstance As VBIDE.VBE

Private mInitials As String

custom() As Variant)
Set VBInstance = VBInst
Set mcbMenuCommandBar =

mcbMenuCommandBar.PasteFace

Set Me.MenuHandler = _
(mcbMenuCommandBar)_mInitials = _
GetSetting(App.Title, _
"Settings", "Initials", "")

End Sub

Public WithEvents MenuHandler As CommandBarEvents
Private mcbMenuCommandBar As Office.CommandBarControl
Private Sub IDTExtensibility_OnConnection _

(ByVal VBInst As Object, ByVal ConnectMode As _
vbext_ConnectMode, ByVal AddInInst As VBIDE.AddIn, _

VBInstance.CommandBars("Edit").Controls.Add
mcbMenuCommandBar.Caption = "Insert Initials"
Clipboard.SetData LoadPicture(App.Path & "\icon.bmp")

VBInstance.Events.CommandBarEvents _

Private Sub IDTExtensibility _OnDisconnection _

As Variant)

End Sub
Private Sub

As Variant)
End Sub
As Variant)

End Sub

Boolean)

(ByVal RemoveMode As vbext_DisconnectMode, custom() _

mcbMenuCommandBar.Delete

IDTExtensib?]1ty,0n$tartupComp1ete(custom() _

Private Sub IDTExtensibility_OnAddInsUpdate(custom() _

Private Sub MenuHandler_Click(ByVal CommandBarControl _
As Object, handled As Boolean, CancelDefault As _

Dim SLine&, SColé&,
With VBInstance.ActiveCodePane

ELine&,

.GetSelection SLine, SCol, ELine, ECol
.CodeModule.InsertLines SLine, "'" & _
mInitials & " " & Format$(Now, _
"dd-mmm-yy hh:mm:ss")
End With
End Sub

ECoT&

LisTING 1 Add-In Connect Class. This class only has 11 lines of code, yet it adds useful functionality to the Visual Basic
development environment. Now whenever you make a change to your source code, you can add your initials and the date
and time so these changes will be easy to track.

at startup. The majority of your code resides
in the IDTExtensibility_OnConnection
method; this will be almost the same for
every add-in you write. In this procedure,
save the instance of Visual Basic that is
passed as an argument, add your add-in to
one of the Visual Basic menus or toolbars,
and load the user’s initials from the Registry.
I chose to add my add-in to Visual Basic’s
Edit toolbar, solused the Add method of the
Controls collection of that toolbar, saved the
reference, then set the caption.

ADD AN ICON TO YOUR TOOLBAR

You won’t need an icon if you're adding
your add-in to a menu, but you’ll need an
icon when adding your add-in to a toolbar.
Because your project does not have aform
or resource file, you add an icon to the
toolbar using the LoadPicture statement
toload a 16-by-16 bitmap to the Clipboard,
then using the PasteFace method of the
CommandBarControl object. I used
MSPaint to create a simple icon bitmap,
which is included with the source code
you can download from the free, Regis-
tered Level of The Development Exchange
(see the Code Online box for details). Link
your MenuHandler proceduretotheevents
for this button. Finally, load the user’s
initials from the Registry—Ilater you'll see
how to get them into the Registry when
your add-in is registered with the Visual
Basic Add-In Manager:

Private Sub _
IDTExtensibility_OnConnection _
(ByVal VBInst As Object, _
ByVal ConnectMode As _

vbext_ConnectMode, _
ByVal AddInInst As VBIDE.AddIn, _
custom() As Variant)
Set VBInstance = VBInst
Set mcbMenuCommandBar = _
VBInstance.CommandBars("Edit"). _
Controls.Add
mcbMenuCommandBar.Caption = _
"Insert Initials"
Clipboard.SetData LoadPicture _
(App.Path & "\icon.bmp")
mcbMenuCommandBar.PasteFace
Set Me.MenuHandler = _
VBInstance.Events.CommandBarEvents _

(mcbMenuCommandBar)

mInitials = GetSetting(App.Title, _
"Settings", "Initials"™, "")

End Sub

One line of code in the IDTExten-
sibility_OnDisconnection method re-
moves the CommandBar button when the
user no longer wants to use the add-in:

Private Sub _
IDTExtensibility_OnDisconnection _
(ByVal RemoveMode As _
vbext_DisconnectMode, custom() _
As Variant)

mcbMenuCommandBar.Delete

End Sub

Now that you’ve connected your add-in
to VB, added it to the toolbar, and linked it
to the toolbar’s Button event, you need to
add the code in the MenuHandler proce-
duretoinsert the user’sinitials. If youscan
the VB IDE extensibility object model in
VB’s Object Browser, you’ll see an

ActiveCodePane property that returns a
CodePane object—the code window where
the user enters code. Use the GetSelection
property of the CodePane object to find
which lines of code are selected. You want
to insert the user’s initials just above the
start line of the selection. You can’t insert
a line of code in a code module using
the CodePane object; you must use the
InsertLines method of the Code
Module object:

Private Sub MenuHandler_Click _
(ByVal CommandBarControl As _
Object, handled As Boolean, _
CancelDefault As Boolean)

Dim SLine&, SCol&, ELine&, ECol&

With VBInstance.ActiveCodePane
.GetSelection SLine, SCol,

ECol
.CodeModule.InsertLines SLine, _
"'" & mInitials & " " & _
Format$(Now, _
"dd-mmm-yy hh:mm:ss")
End With
End Sub

TELL VISUAL BASIC ABOUT YOUR ADD-IN

That'’s all the code you need for your add-in
class. Before you can test the code, you
need to let the Visual Basic Add-In Manager
know about your new add-in. The Add-In
Manager uses the Add-Ins32 section of the
vbaddin.ini file to get a list of add-ins. You
could edit this file manually to add a refer-
ence to your add-in, but because you're
developing an ActiveX EXE, there’s a better
way.Add some codetothe Add-InManager’s
Sub Main startup procedure so that run-

ELine, _

74 JUNE 1998 Visual Basic Programmer’s Journal

http://www.windx.com I

ning your add-in completes the OLE regis-
tration and sets up theINIfiles and Registry.
Your user only needs to run this EXE once
to register it and set his or her initials.

Add a module and name it AddIn.bas.
You need the declaration for the
WritePrivateProfileString API call so you
can update the vbaddin.ini file. Changing
your Project properties so the Startup Ob-
ject is Sub Main executes this procedure
whenever the project starts. Use the App
object’s StartMode property to make sure
your add-in runs as a standalone EXE and
is not started by Visual Basic when estab-
lishing an add-in connection:

Declare Function _
WritePrivateProfileString& Lib _
"Kernel32" Alias _
"WritePrivateProfileStringA" _
(ByVal AppName$, ByVal KeyName$, _
ByVal keydefault$, ByVal FileName$)

Sub Main()

Dim txt$

If App.StartMode = _
vbext_psm_StandAlone Then
txt = GetSetting(App.Title, _

"Settings”, "Initials", "™)
txt = InputBox("Enter Initials", _
"InsertInitials VB Add-In", txt)
SaveSetting App.Title, "Settings", _
"Initials", txt
WritePrivateProfileString _
"Add-Ins32", _
"InsertInitials.Connect”,
"vbaddin.ini"
MsgBox "Insert Initials Add-In " & _
"Registered”
End If
End Sub

"o, _

There’s one last trick you need to use
with your Connect class. The Add-In Man-
ager uses the Description property of the
class to display the add-in’s name in its
window. You need to set the Description
property to make your class appear in the
proper place in the list. You can’t set a
class description fromthe Properties win-
dow—you need to view the class in the

Code Online

You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. For details,
please see “Get Extra Code in DevX’s Premier
Club” in Letters to the Editor.

Track Code Changes

Locator+ Codes

Listings for the entire issue, plus the source
code, toolbar bitmap image, and compiled
DLL needed to start using the add-on with VB
(free Registered Level): VBPJ0698

Listings for this article only, plus the code de-
scribed above (subscriber Premier Level): GS0698

Object Browser, right-click to display the
class properties, and enter the descrip-
tion (see Figure 2).

Now compile your add-in, run the EXE,
and enter your initials. Go back to the
Visual Basic development environment,
click on the Add-Ins menu to display the
Add-In Manager, and enable your add-in
by checking it. When you click on the OK
button, the Add-In Manager instantiates

BEGINNER

GETTING STARTED

your add-in and calls the Connect method.
You should see your new button appear
on the Edit toolbar. Use the Toolbars
menu item from the View menu if the Edit
toolbar does not display. Open a code
window and click on your button—you
should see your initials and the current
date and time. Cool! You've extended Vi-
sual Basic to add the desired functional-
ity. Imagine what else you could do. Xl

http://www.windx.com I

Visual Basic Programmer’s Journal JUNE 1998 75

	Code

