BEGINNER
GETTING STARTED

Create a User
Registration Class

Build a class so you
can easily reuse
user information in

all your apps.

Chris Barlow is president of SunOpTech, a
developer of document management,
decision-support, and supply chain appli-
cations, including the ObjectBank,
ObjectOrder, and ObjectJob systems. He
holds two U.S. Patents related to software
fordecentralized distributed asynchronous
object-oriented and scheduling systems.
Chris, who is a frequent speaker at VBITS,
TecheEd, and DevDays and has been fea-
tured in two Microsoft videos, holds
degrees from Harvard Business School
and Dartmouth College. Reach Chris at
Chris@VBExpert.com or through his Web
server at www. VBExpert.com.

by Chris Barlow

site so you can contact them in the future. Because you probably want to capture
the sameregistration information for each user, regardless of the application, you
should create a Visual Basic class. You can easily reuse a class in all your applications.

You need Visual Basic 5.0 to create the ActiveX DLL and Active Data Objects (ADO)
1.5, and you need Access 97 for the database access. To test the Web-based registra-
tion application, you need access to a Web server. If Internet Information Server (IIS)
running on Windows NT is not available, you can use the Microsoft Personal Web
Server (PWS) running on Windows 95 to test the Active Server Pages (ASP).

Start Access and create a Registration.mdb database with a single Users table (see
Figure 1). You can download the database, the Visual Basic class, and the ASP page
fromthefree, Registered Level of The Development Exchange (see the Code Online box
at the end of this column for details). The user’s e-mail address makes for a good,
uniquekey for the database table because each user has a different e-mail address from
every other user in the world. I've simplified the table a bit for this example, but you
might want to add more user fields or even another table to keep track of the products
and applications registered for a particular user.

Start Visual Basic and create a new ActiveX DLL project. Change the Project name
to Registration, and the Class1 name to cUser. Use this code to add the same database
fields as public properties of the class. Add a property called DBPath to store the path
to the registration database:

ﬂ ften you want to capture information about the users of your application or Web

Public UserlD As Long
PubTic Email As String F|E|d Mame | Daka T-:I.-pe ﬂ
Public FirstName As String ? serID AukoMurmber
Public LastName As String _PEmaill Tewk
Public Salutation As Str‘ing _Fir'stl"-.lan'lE: Texk
Public Address As String _Lastr'-.lame Taxt
Public City As String _Salutaticun Text
Pubh.c State As String . _P.I:Idress Test
Public PostalCode As String 1 —.
Public Country As String —Clt':". Text
PubTic Organization As String —State Text
Public Title As String | [PostalCode Tt
Public WorkNumber As String _Cl:luntr*;.-' Text
Public FaxNumber As String || Crganization Text
Public Password As String _Tit|E: Texk
Public SerialNumber As String || WarkMumnber Text
Public Created As Date || FaxMumber Texk
Public Modified As Date | |Password Texk
Public Expire As Date || 2erialMumber Texk
Public Comments As String _Created Date,l'Time
Public DBPath As String _MDdIFIEd Drake/ Time
Expire Date/ Time

As you read more about ([T |rcamments Mema ﬂ

object-oriented programming [——

with Visual Basic, you’ll learn
that robust classes generally
use public property proce-
dures to give the developer

m User Database Table. When you design
this table in Access, set the Indexed property

for the Email field to Yes (No Duplicates) to make that
field a unique key for this table.

72 APRIL 1998 Visual Basic Programmer’s Journal

http://www.windx.com I

more control over the values of the class
properties. However, you can use this sim-
pler form of property definition in a basic
class such as this. You need to add meth-
ods to the class to provide the functional-
ity—to Clear the properties, to Add a new
user, and to Load an existing user. You also
need methods to check whether a user
already exists in the database (Exists) and
whether a particular user and password is
valid (IsValid).

Using ADOtoaccessthedatabase works
well from ASP pages; you'll find it’s not
much different than the DAO you’ve been
using. ADO is part of Microsoft’s Universal
Data Access strategy to provide high-per-
formance access to any data source, in-
cluding relational and nonrelational data-
bases, e-mail and file systems, text and
graphics, custom business objects, and
more. Built as a layer on top of Microsoft’s
OLE DB, the hierarchy of objects found in
DAO is de-emphasized in the ADO model.
You don’t need to create a Workspace and
then a Database object in order to open a
recordset. With DAO, you generally open a
database at one point in your program and
leave it open while other procedures open
and close recordsets. ADO, on the other
hand, operatesinastateless manner, where
each database access opens and closes
the database and recordset together. ADO
is ideal for data access from a Web site
where a browser retrieves one page of
information, then disconnects until the
user needs another page of information.
ADO even lets you create temporary, unat-
tached recordsets. If you don’t have ADO
installed on your computer, you can down-
load it from Microsoft’s Web site at http://
www.microsoft.com/data/ado.

CREATE THE CLASS METHODS

It is easy to add a record to a table with
ADO. Open an ADODB.Recordset object,
clear the recordset with the AddNew
method, set the values of each field, and
write the record with the Update method:

Public Function Add() As Boolean
Dim rsADO As New ADODB.Recordset
On Error GoTo AddErr
rsADO.Open "Users", Connect, _
adOpenDynamic, adLockOptimistic
rsADO.AddNew
rsADO!Email = Email
rsADO!FirstName = FirstName
rsADO!LastName = LastName
rsADO!Salutation = Salutation
rsADO!Address = Address
rsADO!City = City
rsADO!State = State
rsADO!PostalCode = PostalCode
rsADO!Country = Country
rsADO!Organization = Organization

rsADO!Title = Title
rsADO!WorkNumber = WorkNumber
rsADO!FaxNumber = FaxNumber
rsADO!Password = Password
rsADO!SerialNumber = SerialNumber
rsADO!Created = Created
rsADO!Modified = Modified
rsADO!Expire = Expire
rsADO!Comments = Comments
rsADO.Update

Notice that the recordset has a Connect
parameter that gives the path to the data-
base and driver for the database. I added a
private Property Get procedure to the class
tobuild andreturnthe connect stringbased
on the DBPath property. This technique
will be useful if you decide to expand the
classtolettheuserset the databasedriver—
forexample, tousean ODBC databaserather
than an Access database:

ONCE YOU CREATE THE
CLASS, IT'S EASY TO
WRITE AN ASP PAGE

TO USEIT.
—

Private Property Get Connect() As _
String

Connect = "DBQ=" & DBPath & _
";DRIVER={Microsoft Access " & _
"Driver (*.mdb)}”

End Property

The Load method is even easier. With
an e-mail address as the argument, you
construct a simple SQL statement and
pass it into the Recordset Open method
rather than the table name. If a record is
found, load the class properties from the
recordset and return True:

Public Function Load(sEmail$) As _

Boolean

Dim SQL$

Dim rsADO As New ADODB.Recordset

SQL = "Select * from Users where " & _
"Email = '" & sEmail & "'"

rsADO.Open SQL, Connect

If Not rsADO.EOF Then
UserID = rsADO!UserID
Email = rsADO!Email
FirstName = rsADO!FirstName
LastName = rsADO!LastName

BEGINNER

GETTING STARTED

Salutation = rsADO!Salutation
Address = rsADO!Address
City = rsADO!City
State = rsADO!State
PostalCode = rsADO!PostalCode
Country = rsADO!Country
Organization = rsADO!Organization
Title = rsADO!Title
WorkNumber = rsADO!WorkNumber
FaxNumber = rsADO!FaxNumber
Password = rsADO!Password
SerialNumber = rsADO!SerialNumber
Created = rsADO!Created
Modified = rsADO!Modified
Expire = rsADO!Expire
Comments = rsADO!Comments
Load = True

End If

rsADO.Close

Set rsADO = Nothing

End Function

Using these methods as models, you
should find it easy to complete the other
methods. For example, IsValid accepts the e-
mail address and password as arguments
and constructs a SQL statement to retrieve
the password for that e-mail address. If the
passwordintherecordset matches thepass-
word argument, then the method returns
True (for the complete User class code,
download Listing 1 from the free, Registered
Level of The Development Exchange; seethe
Code Online box for details):

Public Function IsValid(sEmail$, _
Password$) As Boolean
Dim SQL$
Dim rsADO As New ADODB.Recordset
SQL = "Select Password from Users " * _
"where Email = '" & sEmail & "'"
rsADO.Open SQL, Connect
If Not rsADO.EOF Then
If StrComp(Password, rsADO(0), _
vbTextCompare) = 0 Then IsValid _
= True
End If
rsADO.Close
Set rsADO = Nothing
End Function

You can test your new class from Visual
Basic by designing a simple test harness as a
Standard EXE project that references your
class. However, because this class will be
used primarily from ASP pages, I created
two special methods—EntryForm and
DisplayForm—that return an HTML form
ready to display within a Web page (see
Figure 2). Asyouwritemoreclasses touseon
your Web pages, you'll find that methods
that create HTML are extremely useful. The
EntryForm method takes two arguments:
the Web page that the form will be passed to
when the user clicks on the submit button,

http://www.windx.com I

Visual Basic Programmer’s Journal APRIL 1998 73

BEGINNER

GETTING STARTED

Fle Edt View Go Favaites Heb

@ -0 B & A Gl

Back Stop Refresh Home

/3 hitp:/Jwww.vbexpert com/registration. asp?ReferPage=default.htm - Microsoft Intemnet Explorer

Gearch Favortes History Channels | Fullscreen b

base to the server. You can
use Visual InterDev or
FrontPageto createthe ASP

M=

G

Address [E] bttp:/wnn.vberpert camregitiation. sp PReferPage=defaul him

=l lww|| page, butif you don’t have

User Registration Form

Required Information:

Eunter e-mail address: Password

Optional Information:
First Iame: Last Marne

Organization:
[

Street: City.

Confirm Password:

State: ZipfPostal Code:
Country:

[United States |
Work Phone:

4l

Fax Mumber:

-l those tools, simply use
Notepad—it works fine.
Start your page by writ-
ing code to use the
CreateObject method of
the Server object to cre-
ate an instance of your
class. Set the DBPath
property of your class to
the location of the data-
base. You can find out
whether this page was
called with a post method
by checking the Request
object’s ServerVariables
collection. If a form was
posted to this page, call
the ProcessPost proce-

- ull

] Done @ Intemet zons

HTML Entry Form. If you design class methods
that return HTML like this form, you can spend
your time coding in the Visual Basic IDE rather than struggling

with the current state of script editors.

and the submission method. The default for
these arguments will post the formto an ASP
file called Registration.asp. Note that you
can use single quotes rather than double
quotes in the HTML lines. In the first part of
this method, notice that an HTML table is
created with no borders in order to display
the fields with the proper alignment (down-
load Listing 2 from the free, Registered Level
of DevX; see the Code Online box for details).
The actual method is quite long because an
HTML option box s filled with all valid Coun-
try names. The EntryForm method ends by
adding the HTML buttons at the bottom of
the form and returning the resulting HTML.:

HTML = HTML & "<h2><input " & _
"type='submit' name ='Action' " & _
"value=’Register Me'> <input" & _
"type='reset' value='Clear " & _
"Form'></h2>"

HTML = HTML & “</form>”

EntryForm = HTML

End Function

CREATE AN ACTIVE SERVER PAGE
Once you create the class, it’s easy to write
an ASP page to use this class (download
Listing 3 from the free, Registered Level of
DevX; see the Code Online box for details).
You can try out my ASP page and take a
look at the source code and complete class
functions on my Web site at http://www.
vbexpert.com/demo/registration.asp.
First,compileyour classintoan ActiveX
DLL and register it on your Web server.
Don’t forget to copy the registration data-

dure. Otherwise, call the
EntryForm method of the
class and use the Write
method of the Response
object to put the HTML for
the form in the Web page:

<%

Set User = Server.CreateObject _
("Registration.cUser™)

User.DBPath = "c:\registration.mdb"

If Request.ServerVariables _
("REQUEST_METHOD™)="POST" Then
Call ProcessPost

Else
Response.Write User.EntryForm

End If

%>

Save this file as Registration.asp, and
point to it with your browser—you should
see the user registration entry form ap-
pear. Once you've got this much working,
the rest is easy. The ProcessPost proce-
dure is called when the user clicks on the
Register Me button on the entry form. The
logic for this procedureis straightforward.
First, fill the class properties from the form
using the GetFormFields procedure. This
procedure, shown in Listing 3 on DevX,
uses the Form collection of the Request
object to retrieve the fields from the form:

User.Email = request.form("Email")

After getting the value from the form
fields, the procedure checks whether
the password matches what the user
typed into the Confirm Password field
on the form. If it doesn’t match, set the
HTML variable to an appropriate error
message; otherwise, call the ProcessAdd
procedure:

Sub ProcessPost()
GetFormFields
If User.Password <> request.form _
("PasswordC") Then
HTML = "Password fields do not " & _
"match - Please click the " & _
"Back button and re-enter"
Else
ProcessAdd
End If
End Sub

Finally, the ProcessAdd procedure
calls aroutinetoload the class properties
from the form fields, then calls the Add
method of your user class to add the user
to the database:

Sub ProcessAdd()
If User.Add Then
Session("SerialNumber") = _
User.SerialNumber
HTML = HTML & _
" Thank you for registering!<p>"
HTML = HTML & _
" Your Serial Number is:
User.SerialNumber & "<p>"
HTML = HTML & "<a href='" & " _
"Session("ReferPage") & "' _
">Finish Registration"
Else
HTML = HTML & " User " & _
User.UserID & " Not Added <p>"
& ProgVer
HTML = HTML & "<a href="" & " _
"Session("ReferPage") & "' _
">Finish Registration"”
End If
End Sub

"y

Download the ZIP file and start work-
ingwith thisregistration class. Next month
I'll show you how to expand this class to
e-mail a user his or her serial number,
along with a hyperlinkto adownload area
on your Web site. X|

Code Online

You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. For de-
tails, please see “Get Extra Code in DevX’s
Premier Club” in Letters to the Editor.

Create a User Registration Class

Locator+ Codes

Listings for the entire issue, plus the listings
for this column not printed due to space
limitations, as well as the basic registration
application, including the database, class,
and ASPfile (free Registered Level): VBPJ0498
&y Listings for this article only, plus an en-
hanced registration application, including
methods to update and delete user informa-
tion (subscriber Premier Level) GS0498

74 APRIL 1998 Visual Basic Programmer’s Journal

http://www.windx.com I

