
http://www.windx.com

B E G I N N E R

GETT ING STARTED

b y C h r i s B a r l o w

Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-support and supply chain applica-
tions, including the ObjectBank, ObjectOrder,
and ObjectJob Systems. He holds two U.S.
Patents related to software for decentralized
distributed asynchronous object-oriented
and scheduling systems. Chris, who holds
degrees from Harvard Business School and
Dartmouth College, is a frequent speaker at
VBITS, Tech•Ed, and DevDays and has been
featured in two Microsoft videos. Reach Chris
at ChrisB@SunOpTech.com.

Incorporate the

full power of the

registry—a system

database that

allows multilevel

keys and values.

Use the Registry
to Save Information
example, if you increase the font size in the Visual Basic editor (from the Options menu item
under the Tools menu), the larger font will kick in the next time you run Visual Basic.

In 16-bit Windows, you save this information through INI files that contain lines of
name-value pairs within bracketed sections (take a look at your WIN.INI for an example
of this format). 32-bit Windows replaces this two-level structure with the registry—a
system database that allows multilevel keys and values. For example, the Visual Basic
font size information for the Visual Basic editor is saved in the registry under the five-
level key, Software\Microsoft\VBA\Microsoft Visual Basic\FontHeight.

Although Visual Basic includes four statements to read and write to the registry
(GetSetting, SaveSetting, DeleteSetting, and GetAllSettings), these statements are
limited to a two-level structure within a special registry key for backward compatibil-
ity: Software\VB and VBA Program Settings. When you use one of these statements, all
your data is saved within this special key. Wouldn’t it be nice to use the full power of
the multilevel registry from your Visual Basic programs?

At my company, we couldn’t be limited to using the VB and VBA Program Settings
key for the persistent information stored for users of our ObjectBank VB5 app. We
needed to save multiple user profiles for database access. The multilevel key features
of the registry let us save these profiles within a four-level key structure—the
SunOpTech\ObjectBank\ObjectTeller\Profiles key. I wrote a registry API class that replaces
Visual Basic’s four intrinsic statements with more powerful counterparts. You can download
this class from the free, Registered Level of The Development Exchange (see the Code Online
box at the end of the column for details). In this column, I’ll show you how to replace the
GetSetting, SaveSetting, and DeleteSetting statements with direct calls to the registry.

Caution: This class module will write to your registry! If you make an error in the code
or delete the wrong registry value or key, you might damage your applications or operating
system and need to restore them. Before working with this class module, be sure you have

ne thing you can do to make a program more user-friendly is to have it save certain
information upon exiting. This way, settings such as the user name, default
database, and window position will be used the next time the app is run. For
a current backup.
Start a new Visual

Basic project and in-
sert a class module.
Press F4 to display the
Properties window,
and change the
class’s name to
CRegAPI. You need to
declare the registry
API functions that this
class will call. Visual
Basic includes a spe-
cial API Viewer add-
in that contains all the
function declara-
tions, constants, and
types for the Win32
API. To load this add-
in, select the Add-In
Manager from the
Enjoy the View. The Visual Basic API Viewer add-in
provides the easiest way to find a Win32 function

declaration and paste it directly into your application.

FIGURE 1
Visual Basic Programmer’s Journal MARCH 1998 67

Add-Ins menu. You can use this add-in to
locate the registry functions and paste them
into your class module (see Figure 1). You’ll
need quite a few functions for all the features
of the class. For the complete registry API
function declarations, download Listing 1
from the free, Registered Level of The Devel-
opment Exchange.

As you design this class to replace Vi-
sual Basic’s intrinsic functions, program
each method’s default behavior to mimic
the function being replaced. This lets you
easily substitute the methods of this class
for the intrinsic functions in your applica-
tions. Because the intrinsic functions
save all information to the Software\VB
and VBA Program Settings within the
Hkey_Current_User registry root, your class
should default to these keys while provid-
ing optional parameters to access other
keys. Create two properties, KeyPrefix and
Root, and set them in the Class_Initialize
event to these default values. This is also a
good place to create enumerated constants
for the seven registry roots supported by
Windows 95 and Windows NT:

Public KeyPrefix As String
Public Root As Long

68 MARCH 1998 Visual Basic Programmer’s J

B E G I N N E R

GETT ING STARTED
Public Enum RegistryRoots
Hkey_Classes_Root = &H80000000
Hkey_Current_User = &H80000001
Hkey_Local_Machine = &H80000002
Hkey_Users = &H80000003
Hkey_Performance_Data = &H80000004
Hkey_Current_Config = &H80000005
Hkey_Dyn_Data = &H80000006

End Enum

Private Sub Class_Initialize()
KeyPrefix = "Software\VB and " & _

"VBA Program Settings\"
Root = Hkey_Current_User
End Sub

Next, create the class’s first three meth-
ods to mimic the intrinsic statements.
For now, simply write the procedure
definitions—you can fill in the code for
these methods later. Notice that GetSetting
is a function because it returns the value
from the registry, but SaveSetting and
DeleteSetting are subs. The GetSetting
method has an optional parameter for the
default value that will be returned if the
key is not found in the registry:

Public Function GetSetting(appname$, _

ournal
section$, key$, Optional default)
End Function

Public Sub SaveSetting(appname$, _
section$, key$, setting As Variant)

End Sub

Public Sub DeleteSetting(appname$, _
section$, Optional key$)

End Sub

FOR THE SAKE OF ARGUMENT
Because the intrinsic functions are designed
to work with a two-level key structure, they
use two arguments—appname and section.
In the registry API calls, these arguments are
combined with KeyPrefix into a single
backslash-delimited key. You can create a
private MakeKey function to build this single
key from the method’s arguments:

Private Function MakeKey(appname$, _
section$) As String

If Len(section) = 0 And _
Len(KeyPrefix) = 0 Then
MakeKey = appname

ElseIf Len(section) = 0 Then
MakeKey = KeyPrefix & appname

ElseIf Len(KeyPrefix) = 0 Then

http://www.windx.com

B E G I N N E R

GETT ING STARTED
MakeKey = appname & "\" & section
Else

MakeKey = KeyPrefix & appname & _
"\" & section

End If
End Function

Given this single backslash-delimited
key, you can read a value from the registry
by opening that key within the proper root
using the RegOpenKeyEx function. This
function places the value of the open key in
the hKey variable, which you can use in the
QueryValueEx API function to read the ac-
tual value. Don’t forget to close the registry
key with RegCloseKey when you’re done:

Public Function QueryValue(sKeyName$, _
sValueName$) As Variant

Dim lRetVal&
Dim hKey&
Dim vValue As Variant
lRetVal = RegOpenKeyEx(Root, _

sKeyName, 0, KEY_ALL_ACCESS, hKey)
lRetVal = QueryValueEx(hKey, _

sValueName, vValue)
RegCloseKey (hKey)
QueryValue = vValue
End Function

Making the QueryValue function a public
method of the class allows a more experi-
enced programmer to call it directly when
reading values from the registry, rather than
forcing the programmer to use the GetSetting
method. With these two functions, you can
fill in the code for the GetSetting method.
Notice how the default value is returned if
QueryValue returns an empty string:

Public Function GetSetting(appname$, _
section$, key$, Optional default)

Dim vValue As Variant
vValue = QueryValue(MakeKey(appname, _

section), key)
If vValue = "" Then vValue = default
GetSetting = vValue
End Function

Your first method is done! Saving settings
is nearly as easy. Because the registry sup-
ports several different types of values, you
must specify the value type you’re saving. I’ll
show you how to write this class to support
either a string or a long value. Call the
SetKeyValue function to save the value within
the specified key. The SetKeyValue function
calls the RegCreateKeyEx API function rather
than RegOpenKeyEx, so the key will be cre-
ated if it is not present in the registry:

Public Sub SaveSetting(appname$, _
section$, key$, setting As Variant)

Dim lValueType&
If IsNumeric(setting) Then
http://www.windx.com
lValueType = REG_DWORD
Else

lValueType = REG_SZ
End If
SetKeyValue MakeKey(appname, _

section), key, setting, lValueType
End Sub

Finally, the DeleteSetting method has
Visual Ba
two slightly different actions. If a value is
specified, you must delete only that regis-
try value. But if no value is specified, you
must delete the entire key. Delete from the
registry by opening the key with
RegOpenKeyEx and calling either RegDel-
eteKey or RegDeleteValue. You still need to
call RegCloseKey to free up the memory
used by the open key:
sic Programmer’s Journal MARCH 1998 69

B E G I N N E R

GETT ING STARTED
Public Sub DeleteSetting(appname$, _
section$, Optional key$)

Dim lRetVal&
Dim hKey&
If Len(key) = 0 Then

lRetVal = RegOpenKeyEx(Root, MakeKey(appname, ""), 0, _
KEY_ALL_ACCESS, hKey)

RegDeleteKey hKey, section
Else

lRetVal = RegOpenKeyEx(Root, MakeKey(appname, section), 0, _
KEY_ALL_ACCESS, hKey)

RegDeleteValue hKey, key
End If
RegCloseKey (hKey)
End Sub

CREATE A TEST HARNESS
Your class is complete. As with all classes, you should prepare a
simple test harness to debug your class. Add a form to your project,
and add a button for each of your methods. Then add five text boxes
for the KeyPrefix, appname, section, key, and value. If you want to
experiment with other registry roots, you can add seven option
buttons for the enumerated registry roots (see Figure 2). If you
create these option buttons as a single control array with indexes
zero through six, you’ll be able to easily set the Root property of the
class by adding the index to the value of Hkey_Classes_Root.

You can write your test harness by typing only five lines of
code. First, define a public variable as a new instance of your
70 MARCH 1998 Visual Basic Programmer’s Journal
CRegAPI class. Then, in the button Click events, add a line of code
to call each of the three methods of your class, passing the values
of the text-box controls as the arguments:

Public reg As New CRegAPI
Private Sub butGet_Click()
txtValue = reg.GetSetting(txtAppName, txtSection, txtKey)
End Sub

Private Sub butSave_Click()
reg.SaveSetting txtAppName, txtSection, txtKey, txtValue
End Sub

Private Sub butDelete_Click()
reg.DeleteSetting txtAppName, txtSection, txtKey
End Sub

Private Sub Option1_Click(Index As Integer)
reg.Root = Hkey_Classes_Root + Index
End Sub

To test your class, try to read the View key from the Options
section of the API Viewer appname by clicking on the GetSetting
button. Set a break point in the Click event so you can step into the
class and see the registry functions at work. You should see a value
of FullText if your API Viewer is set like mine. Run the RegEdit
program to find some other registry keys to explore, then compare
the results to your class. When you want to use this class in one of
your applications, simply include the CLS file or compile it as an
ActiveX DLL and include a reference. Then change your application
to call these methods and you can work with multilevel keys.
Make Sure to Pass the Test. Every class module needs
a test harness—this simple one requires only five lines of

code to test the methods of the CRegAPI class.

FIGURE 2
http://www.windx.com

Code Online
You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. For details,
please see “Get Extra Code in DevX’s Premier Club” in Letters to the Editor.

Use the Registry to Save Information
Locator+ Codes
Listings for the entire issue, Listing 1 for this article, and a registry API
class that replaces Visual Basic’s four intrinsic statements with more
powerful counterparts (free Registered Level): VBPJ0398

 Listings for this article only, plus the complete registry API class,
including GetAllSettings, which uses multiple calls to enumerate the
registry values (subscriber Premier Level): GS0398

