INTERMEDIATE
GETTING STARTED

Link Your App

o a Web Server

With VB5, you can
not only Web-enable
your app, but also

make it Web-aware.

l:licks& Retrieve

ource

CODE!

Chris Barlow is president and CEO of
SunOpTech, a developer of manufactur-
ing decision-support and supply chain
applications. He’s also a frequent speaker
at VBITS, TecheEd, and DevDays, and has
been featured in two Microsoft videos.
Reach Chris at ChrisB@SunOpTech.com or
through SunOpTech’s Web server at
www.SunOpTech.com.

by Chris Barlow

common feature in Web-enabled software applications is the ability to pop up
ﬂ a browser and display a Web page. This is an easy feature to add to your
software—would you believe it takes only about four lines of code? In this
column, I'll show you not only how to Web-enable your app, but also how to make it
Web-aware, so it has direct access to text returned by the Web server (see Figure 1).
You can probably think of many apps that could utilize this direct Web access. How about
an app that cycles through a database of UPS package tracking numbers, finds out from
www.ups.com whether the package had been delivered, and updates the database with the
delivery information? How about an app that downloads future ocean tide information
from www.tides.com/cgi-bin/tcweb.exe and puts it into alocal database so you can review
it when you're on your sailboat? Or how about an app that checks the Date Modified
property of all the Web pages in your Favorites folder and notifies you of any change?
First, 'l show you how to Web-enable your software app. To create an app that links
to a browser and displays a Web page, you need to set up your computer to work with
Web apps. I suggest using Windows 95, Visual Basic 5, Internet Explorer 3.02, Visual
InterDev, and Personal Web Server with the Active Server Page (ASP) extensions so you

om| File Edt Toolz Help == x|
Process

[Idle

[* Woark Orders

[* Job Changes

[® Besource Oiders

Process How

WwiorkLoad:

InBasket:

0of 0
ReSchedule:

Using: d:hsunophdatabaze

I 1
Feady...

Make Your App Web-Aware. At one of my

company’s client’s manufacturing plants, each
production department running SunOpTech scheduling
software “publishes” its production schedule on its Web
server. When an app running in one department needs to
check when its components will be ready in another
department, the app contacts the Web server in the second
department and requests the current schedule for that
component. Although this interapplication communication
between departments uses standard Web protocols, the
exchange of information isn’t visible to the user and doesn’t
require user interaction. The application has direct access to
the text returned by the Web server.

can test your Web apps on
your own system. If you
don’t use Visual InterDev,
use FrontPage.

Now you're ready to add
Web access to an existing VB
project or to a new project.
Right-clickon the project and
display the References. Make
sure Microsoft Internet Con-
trols is checked; if not, use
the Browse button to locate
the SHDOCVW DLL in your
Windows System folder (see
Figure 2). Internet Explorer
also uses this DLL. Press the
F2 key to display the Object
Browser and look at the
properties and methods of
the Internet Explorer class
within this DLL. The Navi-
gatemethod takes aURL as
an argument, pops up
Internet Explorer, and
jumps to the URL.

Add a form to your pro-
ject, and place a TextBox
control and a CommandBu-
tton control. Double-clickon
the CommandButton control
and addthis code,whichcalls
another subroutine and
passesthe URLtypedintothe
TextBox control:

70 OCTOBER 1997 Visual Basic Programmer’s Journal

http://www.windx.com I

Private Sub Commandl_Click()
GoExpTorer txtURL
End Sub

Dimension a variable, cWeb, to hold an instance of the
InternetExplorer class. Create the GoExplorer subroutine with
these three lines of code to instantiate the class. Now call the
subroutine’s Navigate method with the URL, and make the
Internet Explorer window visible:

Dim cWeb As SHDocVw.InternetExplorer

Private Sub GoExplorer(sURL$)

Set cWeb = New SHDocVw.InternetExplorer
cWeb.Navigate sURL

cWeb.Visible = True

End Sub

Now your application can do the same thing done by many
software packages advertised as “Web-enabled” apps.

MAKE YOUR APPLICATION WEB-AWARE
As neat as it is to be able to pop up a browser already navigated
to a specific URL, it doesn’t make your app a “Web” app. You still
rely on the user to point and click to navigate beyond that URL,
and the text on the Web pages is not readily available to your app.
At my company, SunOpTech, we develop apps that go beyond
“Web-enabled” to become “Web-aware.” These apps rely on Web
servers to provide much of the data they need to operate. For
example, in one of our client’s manufacturing plants, each pro-
duction department running SunOpTech scheduling software
“publishes”its production schedule on its Web server (see Figure
1). When an app running in one department needs to check when its
components will be ready in another department, the app contacts
the Web server in the second department and requests the current
schedule for that component. Although this interapp communica-
tion between departments uses standard Web protocols, the ex-
change of information isn’t visible to the user and doesn’t require
user interaction. The app has direct access to the text returned by

References - GSINTE™1.¥BP

fvailable References: oK
v|Yisual Basic For Applications - Cancel
v|Yisual Basic runtime objects and procedures
v|Yisual Basic objects and procedures
| OLE Automation Browse..,

Mllicrosoft Inkernet Cantrols
ActiveMovie control bype library ﬂ
Activer Control Wizard
AFT Declaration Loader
Application Performance Explorer Client
Application Performance Explorer Expediter ﬂ

Application Performance Explorer Instancer
-
| »

Application Performance Explorer Logger

Application Performance Explorer Manager
CHWINDOWS] SYSTEMSHDOCY W, DLL

Standard

i

4

rhnnlication Performance Explorer Pool Manaaer

Microsoft Internet Controls
Location:

Language:

mProject References. This dialog lets you set the
references that the Visual Basic editor will recognize as

you type code. Adding a reference here lets you easily view the
properties and methods in the Object Browser. A reference also lets
VB provide proper syntax checking as you enter code using this
object’s properties and methods.

INTERMEDIATE
GETTING STARTED

the Web server. The SHDOCVW method doesn’t provide this
functionality. Fortunately, you can accomplish this nearly as easily
with the Win32 Internet functions built into the Winlnet DLL.

The Winlnet DLL gives complete Internet functionality to
any VB app. When you use this DLL, you don’t need to use the
SHDOCVW DLL or any other Internet controls on the market.
Tokeepit simple, use only four of the functions from this DLL.
For more detailed information, look at the Microsoft Win32
Internet Programmer’s Reference at www.microsoft.com/
intdev/sdk/docs/wininet.

Add a module to your project and insert the function
declarations for the Winlnet DLL (see Listing 1). You’'ll use
these four functions:

¢ InternetOpen to establish an Internet session for your
application.

¢ InternetOpenURL to connect to a Web server and make sure
the file exists on the Web server.

¢ InternetReadFile to read the HTML text from the file on the
Web server.

¢ InternetCloseHandle to close the file after you read it.

Let’s step through the function you’ll write to retrieve data
from a Web server. Create a function called GoWinlnet that
receives a string argument of the URL and returns the text from
that URL as a string. Dimension a 4K buffer, sBuffer, to hold the
text from each read of the file, and a string, sReturn, to hold the
entire text from the file. Dimension a long variable to hold the
number of bytes read from the file, and a Boolean, bReadOK, to
hold the return value from reading the file. Finally, dimension
two long variables, 1Session and IFile, for the session and file
handles returned by the function calls:

vea | 324t | ves.

Option Explicit

Public Const INTERNET_OPEN_TYPE_PRECONFIG = 0

' indicates to use config info from registry

Public Const INTERNET_FLAG_EXISITING_CONNECT = _
&H20000000

Public Declare Function InternetOpenUrl Lib _
"wininet.d11" Alias "InternetOpenUrlA" _
(ByVal hInternetSession As Long, _
ByVal 1pszUrl As String, _
ByVal 1pszHeaders As String, _
ByVal dwHeaderslLength As Long, _
ByVal dwFlags As Long, ByVal dwContext As Long) _
As Long

PubTic Declare Function InternetOpen Lib "wininet.d11" _
Alias "InternetOpenA" (ByVal sAgent As String, _
ByVal 1AccessType As Long, _
ByVal sProxyName As String, _
ByVal sProxyBypass As String, ByVal 1Flags As Long) _
As Long

PubTlic Declare Function InternetReadFile Lib _
"wininet.d11" (ByVal hFile As Long, _
ByVal sBuffer As String, _
ByVal T1NumBytesToRead As Long, _
TNumberOfBytesRead As Long) As Integer

Public Declare Function InternetCloseHandle Lib _
"wininet.d11" (ByVal hInet As Long) As Integer

LISTING 1 Win32 Internet Module. This module contains the
function declarations from the Winlnet DLL used by the
GSinternet application.

http://www.windx.com I

Visual Basic Programmer’s Journal OCTOBER 1997 71

INTERMEDIATE
GETTING STARTED

Private Function GoWinInet(sURL$) _
As String

Dim sBuffer As String * 4096

Dim sReturn As String

Dim TNumBytes As Long

Dim bReadOK As Boolean

Dim 1Session As Long

Dim 1File As Long

Call the InternetOpen function to re-

turn a handle to an Internet session. Pass
this handle to the next function call to
connect to a URL:

1Session = InternetOpen("GSInternet™, _
INTERNET_OPEN_TYPE_PRECONFIG, _
vbNul1String, vbNullString, 0)

Call the InternetOpenUrl function to
pass the URL and the handle to the ses-

sion and to save thereturned handle that
points to the file on the Web server:

1File = InternetOpenUrl(1Session, _
sURL, vbNul1String, 0, _
INTERNET_FLAG_EXISITING_CONNECT, 0)

If a nonzero file handle is returned,
begin a Do loop to read text from the file
into the buffer using the InternetReadFile
function. This function fills in the fourth
argument with the actual number of bytes
read from the file, and returns a nonzero
value if the function was successful. If any
bytes are returned, concatenate them to
the sReturn string from the buffer:

If 1File Then
Do

vBa | 324t | ves.

Option Explicit
Dim cWeb As SHDocVw.InternetExplorer
Private Sub Commandl Click()
GoExplorer txtURL
End Sub
Private Sub GoExplorer(sURL$)
Set cWeb = New SHDocVw.InternetExplorer
cWeb.Navigate sURL
cWeb.Visible = True
End Sub
Private Sub Command2_Click()
MsgBox GoWinInet(txtURL)
End Sub
Private Function GoWinInet(sURL$) _
As String
Dim sBuffer As String * 4096
Dim sReturn As String
Dim TNumBytes As Long
Dim 1Session As Long
Dim 1File As Long
Dim bReadOK As Boolean
1Session = _
InternetOpen("GSInternet"”, _
INTERNET_OPEN_TYPE_PRECONFIG, _
vbNul1String, vbNullString, 0)
1File = InternetOpenUrl(1Session, _
sURL, vbNullString, 0, _
INTERNET_FLAG_EXISITING_CONNECT, 0)
If 1File Then
Do
bReadOK = _
InternetReadFile(1File, _
sBuffer, Len(sBuffer), _
TNumBytes)
If 1NumBytes Then
sReturn = sReturn & _
Left$(sBuffer, TNumBytes)
End If
Loop While bReadOK And 1NumBytes > 0
InternetCloseHandle (1File)
GoWinInet = sReturn
Else
MsgBox "Cannot open URL"
End If
End Function

LisTING 2 GSInternet Form. This module

contains the code for both the
SHDOCVW and Winlnet functions that let
you access the Web from any Visual Basic
application.

72 OCTOBER 1997 Visual Basic Programmer’s Journal

http://www.windx.com I

bReadOK = InternetReadFile_
(1File, sBuffer, _
Len(sBuffer), TNumBytes)
If 1NumBytes Then
sReturn = sReturn & _
Left$(sBuffer, 1NumBytes)
End If

If the prior read is successful and bytes
were read, loop back and execute another
read. Continue until the file is completely
read. Call the InternetCloseHandle func-
tion to close the file and return the com-
plete text to the function:

Loop While bReadOK And TNumBytes > 0
InternetCloseHandle (1File)
GoWinInet = sReturn

Else
MsgBox "Cannot open URL"

End If

End Function

That’s all you need to do to get the raw
text fromany URL ontoaWeb server. Test
this within your app by adding a second
CommandButton to your form and this
code. This code passes the URL to your
new GoWinlnet function and displays the
returned text in a message box:

Private Sub Command2_ Click()
MsgBox GoWinInet(txtURL)
End Sub

Give this a try and you should see the
actual HTML text from the URL displayed
in the message box. Now that you have
the text, you can parse it to find the par-
ticular values your app needs. When
SunOpTech writes similar routines for

Code Online

You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. All the list-
ings and associated files essential to the ar-
ticles are available for free to Registered mem-
bers of DevX, in one ZIP file. This ZIP file is
alsopostedinthe Magazine Library of theVBPJ
Forum on CompuServe. DevX Premier Club
members ($20 for six months) can get each
article’s listings in a separate file, as well as
additional code and utilities for selected ar-
ticles, plus archives of all code ever published
in VBPJ and Microsoft Interactive Developer
magazines.

Link Your App to a Web Server

Locator+ Codes

Listings ZIP file (free Registered Level):
VBPJ1097

O Listings for this article plus the VB files
that let your app access the Web, including
both the SHDOCVW version and the Winlnet
version (subscriber Premier Level): GS1097P

interapplication communication, we sig-
nal the Web server to return minimal
HTML text so little parsing is needed to
get the required data. We do this by add-
ing an extra argument to the query argu-
ments embedded in the URL to indicate
an app rather than a user will read the
resulting HTML file.

I've included the code that lets your
app access the Web, using both the

INTERMEDIATE
GETTING STARTED

SHDOCVW version and the Winlnet ver-
sion (see Listing 2). Download the VB files
from the Premier Level of The Develop-
ment Exchange Web site (see the Code
Online box for details). An obvious next
step would be to encapsulate these
Winlnet functions in your own ActiveX
control. Let me know if you're interested
in learning how, and I'll consider it for a
future column. X|

http://www.windx.com I

Visual Basic Programmer’s Journal OCTOBER 1997 73

	Code

