
62 SEPTEMBER 1997 Visual Basic Programm

I N T E R M E D I A T E

GETT ING STARTED

b y C h r i s B a r l o w

Launch Your App

Chris Barlow is president and CEO of
SunOpTech, a developer of manufac-
turing decision-support applications,
including the ObjectBank, Object Order,
and ObjectJob Systems. He is a
frequent speaker at
VBITS, Tech•Ed, and
DevDays, and is fea-
tured in two Microsoft
videos. Reach Chris at
Chr i sB@SunOpTech
.com or through SunOp
Tech’s Web server at
www.SunOpTech.com.

Make sure you use

the latest version

of your app when

making changes

to the code.
ou complete your first Visual Basic system and install it on the user’s
computer. It consists of a database and three different applications. You put
shortcuts to all three applications on the user’s desktop. The user double-

clicks on the shortcuts and sees the database open and each application start up. The
user is satisfied. You’re all done, right?

If you’ve been through a system startup, you know the answer to that question.
You’re not even close to “all done,” and in some ways, this is the beginning. I guarantee
the user will call and say one of the applications is not working right, or that he or she
wants a “minor” change in one of the screens. When taking a fresh look at the
applications, you’ll find a little code you want to tweak or a feature you want to improve.

Welcome to the world of system maintenance. Fortunately, Visual Basic makes it easy
to implement the kind of changes users invariably want as they begin to live with a new
application. You can change the menus, redraw the screens, and even add new fields to
the database almost faster than users can ask you to. The nice thing is that most of these
changes require only a simple compile of a new EXE—not an entire new setup kit.

But installing the new version of your application so the user can launch it is not as
easy as it sounds. Often, you don’t visit the user’s site to install the new version;
instead, you connect to his or her computer through a modem, LAN, or the Internet.
Can you connect directly to the user’s disk to overwrite your old EXE, or can you see
a shared server on the user’s network? You can’t have your applications reside on the
server and point each user’s desktop shortcuts to the server—suppose the user is
running the application when you want to replace it? You’ll get the error message
saying the file is open and cannot be overwritten.

At SunOpTech, we solved this problem by creating an application launcher. When-
ever a user wants to run one of the applications in the system, his or her request is

funneled through the
launcher first. The
SunOpTech Launcher is
not as rigid as a typical
menu application. In most
cases, the user doesn’t
realize it’s being ex-
ecuted. Its job is to make
sure the latest version of
the application is running.

All the desktop short-
cuts point to the launcher
instead of the application.
When the user double-
clicks on the shortcut to
launch an application,
Launcher fires up.
Launcher looks at the ver-
sion information from the
application’s EXE file in
the program folder. Then
Launcher looks for the
same EXE file in a pre-
defined install folder on
that computer (or server)
er’s Journal
Project Make Properties. This dialog lets you set
the Command Line Arguments you need to test the

launcher application in the Visual Basic design environment.
Notice Launcher’s version information and the Auto Increment
check box to increment the App.Revision property every time
the project is compiled.

FIGURE 1
http://www.windx.comhttp://www.windx.com

I N T E R M E D I A T E

GETT ING STARTED
and checks the version information of that
file. If the EXE file in the install folder is
newer, Launcher copies the newer version
into the program folder. Finally, Launcher
gives the command to launch the applica-
tion, and Launcher terminates.

The launcher makes program upgrades
easy. When you compile a new version of
the application, copy it to the install folder.
The next time the user runs the applica-
tion, Launcher copies your new version
to the program folder and launches it.

Because requests to run your applica-
tions are funneled through the launcher,
you can centralize functionality in
Launcher. For example, you can use
Launcher to log the user onto your system
by requesting a user ID and password and
verifying this information against a data-
base. You can check a central message
database for messages of interest to this
user. You can “lock up” your applications
so they won’t start unless they receive a
certain code on the command line from
Launcher. That way, instead of letting the
user run the application directly, you’d
force the user to go through Launcher.

CREATE A LAUNCHER
To use the launcher, you must control the
version of your application. Visual Basic
makes it easy to identify your program by
adding a version resource to the EXE file.
You can modify the information about
your application using the Options but-
ton on the Make Project window. I suggest
setting the option to automatically incre-
ment the revision each time you compile
the application. You can override the Mi-
nor and Major properties as you make
substantial changes to your application.

In last month’s column [“Identify an
App’s Version” VBPJ August 1997], I wrote
an ActiveX DLL that reads this version
information, along with the file’s date and
time. Launcher uses this FileVer DLL to
read the version resource information
from the file in both the program and the
install folders to determine which is more
recent. You can download this DLL from
the Premier Level of The Development
Exchange (see the Code Online box at the
end of this column for details).

Start a new Standard EXE project in
Visual Basic and right-click on the Project
window to add a module. Click on the
Properties menu item on the Project menu
to name the project “Launcher.” Set the
Startup Object to Sub Main. Then click on
the References menu item on the Project
menu to add a reference to the FileVer
DLL from last month’s column.

Visual Basic’s Standard EXE project has
a single form you can use as a splash
screen to let the user know what’s happen-
http://www.windx.com
ing while you copy the upgraded EXE file.
Rename the form “Splash.frm.” I suggest
designing a simple form with Label con-
trols for Launcher’s version and copyright,
as well as a larger Label control to display
the action that Launcher is performing.

The Main subroutine executes when
Launcher starts. First, show the Splash
form to give the user some visible feed-
back. Get the setting for the install folder
from the registry using the GetSetting
statement, and store the setting in a pub-
lic variable called InstallFolder. If this vari-
able is null, as it will be the first time
Launcher runs on a computer, use the
InputBox function to request the install
folder. If the user doesn’t enter a folder or
presses the Cancel button, Launcher will
terminate; otherwise, the install folder
setting is saved to the registry:

VB MAKES IT EASY TO

 IMPLEMENT THE KIND OF

CHANGES USERS INVARIABLY

WANT AS THEY BEGIN TO

LIVE WITH A NEW APP.

Public Sub Main()
Dim txt$
Splash.Show
Splash.Refresh
InstallFolder = _

GetSetting("Launcher", _
"Folders", "InstallFolder", "")

If Len(InstallFolder) = 0 Then
InstallFolder = InputBox_

("Please enter path to " & _
"Install Folder", _
"No Install Folder", App.Path)

If Len(InstallFolder) = 0 Then _
End

SaveSetting "Launcher", _
"Folders", "InstallFolder", _
InstallFolder

End If

The application to be launched is
passed on the command line with the full
path to the application. You can test this
in debug mode by setting the Command
Line Arguments on the Make tab of the
Project properties dialog (see Figure 1).
Visual Basic
Visual Basic makes command-line argu-
ments available through the Command
property of the App object. If this prop-
erty is null, the user hasn’t specified a
program to launch, and an appropriate
error message is displayed:

If Len(Command) = 0 Then
txt = "This program will " & _

"launch the program " & _
"specified on the " & _
"command line." & vbCrLf

txt = txt & "It will " & _
"compare this program’s " & _
"date and version " & _
"against the same " & _
"program in " & vbCrLf

txt = txt & InstallFolder & _
vbCrLf

txt = txt & "and give you " & _
"the option to replace " & _
"your program with this " & _
"version." & vbCrLf

txt = txt & "Please enter " & _
"path and EXE name on " & _
"command line and re-run " & _
"this program."

MsgBox txt

If there is any text on the command
line, then the Command property is
parsed at the first space, in case addi-
tional command-line arguments need to
be passed to the launched program
(download the ParseString procedure,
included in the complete listing for the
Launcher module, from the free, Regis-
tered Level of The Development Ex-
change. See the Code Online box at the
end of this column for details). The file
path is passed to a ProgCheck procedure
to check the version information. If this
procedure returns True, the application
launches using the Shell statement. Fi-
nally, the Splash form is unloaded, and
Launcher terminates:

Else
If ProgCheck(ParseString_

(Command, " ", 1)) Then
Shell Command, 1

End If
Unload Splash

End If
End
End Sub

CHECKING THE VERSION
The ProgCheck procedure needs to check
whether the file exists in both the pro-
gram and install folders. The ProgCheck
procedure also checks the versions and
copies the EXE from the install folder if it
is a newer version. First, check for the file
in the program folder and get its version
Programmer’s Journal SEPTEMBER 1997 63

I N T E R M E D I A T E

GETT ING STARTED

Code Online
You can find all the code published in this
issue of VBPJ on The Development Ex-
change (DevX) at http://www.windx.com.
All the listings and associated files essential
to the articles are available for free to Reg-
istered members of DevX, in one ZIP file.
This ZIP file is also posted in the Magazine
Library of the VBPJ Forum on CompuServe.
DevX Premier Club members ($20 for six
months) can get each article’s listings in a
separate file, as well as additional code and
utilities for selected articles, plus archives
of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

Launch Your App
Locator+ Codes
Listings ZIP file and GS0997.ZIP, which in-
cludes the complete listing for the Launcher
module discussed in this column (free Regis-
tered Level): VBPJ0997

 Listings for this article plus the source
code for the launcher application and the
FileVer DLL discussed in last month’s column
(subscriber Premier Level): GS0997P
with the GetProgVersion procedure:

Private Function ProgCheck(File$) _
As Boolean

Dim verLocalF$, res%
Dim verServerF$
Dim prgServerF$, msg$
res = FileExist(File)
If res = True Then

verLocalF = GetProgVersion(File)
Else

msg = File & _
" is not in Program folder." _
& vbCrLf

End If

THE LAUNCHER’S JOB

IS TO MAKE SURE THE

LATEST VERSION OF

 THE APPLICATION

IS RUNNING.

Check for the file in the install folder,
get its version, and compare the two
versions. If the program folder version is
lower, put a message in the Comment
label on the splash form and use the
FileCopy statement to copy the file:

prgServerF = InstallFolder & "\" & _
StripPathName(File)

res = FileExist(prgServerF)
If res = True Then

verServerF = _
GetProgVersion(prgServerF)

On Error GoTo ErrorHdler
If verLocalF < verServerF Then

Splash.lbComment = _
"Copying from Server"

Splash.Refresh
FileCopy prgServerF, File
msg = ""

End If
ProgCheck = True

The procedure ends with appropriate
error handling.

The GetProgVersion procedure is
simple because it uses the FileVer DLL
created in last month’s column. Dimen-
sion an instance of the cFileVer class and
set the sFileName property. Then call
the GetFileVersionData method and re-
64 SEPTEMBER 1997 Visual Basic Programm
turn the sFileVersion property:

Private Function _
GetProgVersion(File$) As String

Dim cF As New cFileVer

On Error GoTo Errhdlr
cF.sFileName = File
cF.GetFileVersionData
GetProgVersion = cF.sFileVersion

Exit Function

Errhdlr:
MsgBox "Error= " & Error$ & _

" Err=" & Err.Number & _
Chr(13) & "File name=" & _
"(" & File$ & _
")"

End Function

You can download the source code
files for Launcher from the Premier Level
of The Development Exchange (see the
Code Online box for details). I’m curious
to see how you enhance Launcher. E-mail
me your improvements, and I’ll share them
with other readers.
er’s Journal http://www.windx.com

