
GETTING STARTED
WITH VBA

Click & Retrieve

Source

CODE!
Learn to manipulate a Word docu-
ment by writing a VBA procedure.

by Chris Barlow

f you read this column regularly, you know that it goes
where the VBA action is. It started with VBA in Excel 5.0
and then moved up to VBA in Visual Basic 4.0. Now, with

Program Word
with VBA 5.0

the release of Office97, Microsoft has completed its long-term plan
of making Office programmable by embedding VBA in all the Office
applications. You can write a routine in VBA to control Excel,
Project, Word, Outlook, Access, and so on. No more struggling to
learn a different macro language for each different application. No
more translating standard routines from one language to another.
You can command the full power of Visual Basic and use Office97’s
rich feature set to write your own procedures to extend the
functionality of these applications.

Even better, Microsoft is licensing VBA so that other vendors
can embed the Visual Basic programming language in their appli-
cations. Soon you should see VBA as an integrated part of CAD
programs, drawing programs, and desktop publishing systems.
Now is the time to get started. VBA5 will open up significant
opportunities for anyone proficient in Visual Basic.

VBA5 is an enhancement to the VBA language that was first
released in Excel 5.0 and Project 6.0, then upgraded in Excel 95 and
Access 95. Because VBA is written largely in C++ rather than Intel-
specific assembler code, it is portable to many platforms. Microsoft
is releasing VBA5 for all 32-bit Windows 95 and Windows NT
h/PowerPC.
platforms. It will also be available on the Macintos
There is even some talk of a Unix version.

VBA5 functions through “host applications” such
as Excel or Word, which provide the facility to save
the VBA source code in modules and share the memory
space between the application and VBA. Therefore,
these host applications must be running in order to
run VBA code. Each host application can provide a
different implementation of Visual Basic. For example,
while Word 97 stores VBA code in documents or
Chris Barlow is president and CEO of SunOpTech, a
developer of manufacturing decision-support applica-
tions, including the ObjectBank and the ObjectJob
Systems, where he and Ken Henderson hold U.S. Patent
#5,550,976 related to software for decentralized dis-
tributed asynchronous object-oriented systems. Chris
holds degrees from Harvard Business School and
Dartmouth College, where he worked with Drs.
Kemeny and Kurtz on the Basic language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or
through SunOpTech’s World Wide Web server at
www.SunOpTech.com. in

http://www.windx.com
templates, Access 97 provides a slightly different implementation
and stores code in the database and uses a different forms engine.

VBA is part of a scalable family of products. The lowest end,
VBScript, is a subset of the VBA language designed for use in
browsers. At the high end, the standalone product, Visual Basic
5.0, also will use the VBA5 language engine and IDE. But, among
other things, VB5 will extend VBA to allow the creation of
standalone EXE files and ActiveX documents and controls.

LEARN VBA FOR WORD
Before you can write a VBA procedure to manipulate a Word
document, you need to learn a bit about Word’s object model.
When you write a VBA procedure, you interact with Word through
its exposed OLE properties and methods. Although the model
is large, with hundreds of properties and methods, you only use
a small number of these objects in most of your VBA procedures.
If you use the macro recorder, the debugger, and the object
browser, you find that Visual Basic helps you learn about these
objects. Yes, Word now has a “macro recorder” that records your
keystrokes and translates them into VBA code. Using the macro-
reader is the ideal way to build up your own library of useful
procedures and learn Word’s object model.

The Word object model is logical and easy to understand. Its
objects range from Document objects at one end of the spectrum
to Character objects at the other. When Word is running, its
highest level is the Application object. This object has a collec-
tion of Document objects that refer to each of the open docu-
ments. As with any collection, you can refer to an element of the
collection by an ordinal index number. For example, Docu-
ments(1) refers to the first Document object in the Documents
collection. You can refer to the document you are editing in
Word—the active document—by using the ActiveDocument prop-
Immediate Window. Notice how the same popup features availableFIGURE 1
 the editor carry over to the Immediate Window.

Visual Basic Programmer’s Journal DECEMBER 1996 79

GETTING STARTED
WITH VBA
erty of the Application object.
Each Document object has collections of Paragraph objects,

Word objects, and Character objects. As with any collection, you
can refer to an item of the collection by an index. Therefore,
ActiveDocument.Words(15) returns the 15th word in the docu-
ment. Similarly, ActiveDocument.Characters(202) returns the
202nd character in the document. You can also combine these
objects together so that ActiveDocument.Words(5).Characters(2)
returns the second character in the fifth word in the active
document.

You can begin to work with Word’s object model by using the
Immediate Window that is part of the VBA IDE. The Immediate
Window lets you enter VBA statements and see the results. Try
this out now by starting Word and loading a document. Then
select the Macro menu item from the Tools menu and click on
Visual Basic Editor (or press Alt-F11) to display the VB editor.
The Visual Basic editor pops up in a separate window (although
it runs in Word’s memory space). Within the VB editor, select
the Immediate Window menu item from the View menu (or press
Ctrl-G) to display the Immediate Window where you can type in
VBA code.

Try some of the examples you see in Figure 1. Notice the
feature called List Properties/Methods. As you type, this feature
enables the editor to pop up a list box containing the properties
and methods of the object. You’ll find this to be a huge help while
learning the object model. You can use the For Each statement to
iterate through all the items in a collection. This statement
assigns the next item in the collection to the variable each time
through the loop. You don’t need to know the index of the first and
last items in the collection. Before this statement was available in
VBA, you needed to get the Count property of a collection to
establish the last item, and you needed to know whether the
collection was one-based or zero-based to establish the first item.
Try typing these statements in the Immediate Window and see
how they operate:

For Each x In ActiveDocument.Styles: _
?x: Next

For Each x In Documents: ?x: Next
80 DECEMBER 1996 Visual Basic Programmer’s Journal

LISTING 1 ReplaceName Document. This source is embedded in th
with the procedure description.

Selection.TypeParagraph
For Each x In ActiveDocument._
Paragraphs: ?x.Style: Next

The first statement displays all the styles in the active document
by using the Styles collection and printing the default property of
the Style object—its name. The second statement steps through
the Documents collection and displays the document name. The
last statement steps through the Paragraphs collection of the
active document and displays the name of the Style associated
with that paragraph.

LEARN BY RECORDING
When you sit down to write your first VBA procedure for Word,
you may not know where to start. How do you insert text into
Word? How do you move through the document? Let the macro
recorder help.

For example, suppose you are typing a letter. You aren’t sure
of the person’s address, so for now you just type his or her last
name. After you finish the letter you find the last name, look up
the proper address from your contact manager, and type the
address into the letter. How would you write a procedure to
automate part of this process?

Begin by starting a new Word 97 document and typing the text
of the letter with only the last name where you want the full name
and address. Then turn on the macro recorder so it begins
recording your keystrokes, translating them into VBA, and saving
them for you to review, edit, or run later. The easiest way to turn
on the macro recorder is to click in the panel labeled REC on the
Status Bar at the bottom of the Word screen. The Record Macro
dialog that appears lets you enter a name and description for the
macro, assign it to a toolbar or keyboard shortcut, and decide
whether to store it in a template or the open document. Enter
ReplaceName for the macro name, and click on the OK button.

You will see that the image of a small tape recorder appears
next to your mouse pointer. You will also see a small toolbar with
Stop and Pause buttons appear. Now click on the Find menu item
on the Edit menu to start the Find dialog. Enter the last name that
you typed in the letter, and click on the Find Next button to find
and select the last name. Then click on the Cancel button to
E

F
D
D
D
D

S
S
S
S
S

S
I

E
r
d
S
S
E

Attribute VB_Name = "NewMacros"
Option Explicit

Sub ReplaceName()
Attribute ReplaceName.VB_Description = _
"Macro recorded Monday, September 16, 1996 by " & _
"Chris Barlow"

Attribute ReplaceName.VB_ProcData.VB_Invoke_Func = _
"Project.NewMacros.ReplaceName"

Dim txt$
txt = InputBox("Enter LastName")
Selection.Find.Execute (txt)
txt = InputBox("Enter Full Name")
txt = txt & vbLf & InputBox("Enter Organization")
txt = txt & vbLf & InputBox("Enter Street")
txt = txt & vbLf & InputBox("Enter City, State Zip")
Selection.TypeText Text:=txt
Selection.TypeParagraph
End Sub

Sub ReplaceNameDB()
Dim txt$
txt = InputBox("Enter LastName")
Selection.Find.Execute (txt)
Selection.TypeText Text:=LookupName(txt)
e W
nd Sub

unction LookupName(Lastname$) As String
im ws As Workspace
im db As Database
im rs As Recordset
im SQL$

QL = "Select Contact, Name, Addr1, City, State, Zip"
QL = SQL & " From Contact Where Last_Name = '"
QL = SQL & Lastname & "'"
et ws = DBEngine.Workspaces(0)
et db = ws.OpenDatabase("c:\actwin2\database", _
True, True, "dBase IV")
et rs = db.OpenRecordset(SQL)
f Not rs.EOF Then
LookupName = rs(0) & vbLf & rs(1) & vbLf & _

rs(2) & vbLf & rs(3) & ", " & _
rs(4) & " " & rs(5)

nd If
s.Close
b.Close
et rs = Nothing
et db = Nothing
nd Function
http://www.windx.com

ord document file. Notice the VBA5 Attribute within the module

GETTING STARTED
WITH VBA
close the dialog. Now type the correct address. Remember to
use the Shift-Enter key combination at the end of each address
line so that all lines are part of the same paragraph for format-
ting purposes. Then press the Stop button to stop recording the
macro, and press Alt-F11 to jump to the Visual Basic editor. Take
a look at the code for the procedure Sub ReplaceName(). You
should see something like this:

Sub ReplaceName()
Selection.Find.Execute
Selection.TypeText Text:="Mr. Christopher R. Barlow" & _

Chr(11) & "SunOpTech" & Chr(11) & _
"1500 West University Parkway" & Chr(11) & _
"Sarasota, FL 34243-2290"

Selection.TypeParagraph
End Sub

You can see from using the recorder that the Find object has an
Execute method and that the TypeText method of the Selection
object inserts text into the document. The TypeText method
replaces any text that you select with the text passed in the Text
parameter. Also notice that the Shift-Enter key combination
translates to the ASCII linefeed character.

TAKE ADVANTAGE OF THE MACRO RECORDER
This code needs just a few changes to generalize it for future use.
For the easiest way to write VBA code, let the macro recorder do
the work, and then make a few changes to make the procedure
useful in the future.

First, use the object browser to find out how to make the Find
method more generic. While you are in the code window, position
your cursor on the Execute method and press Shift-F2 to pop up
the object browser. Notice how the object browser jumps to the
Execute method and displays the possible parameters. The
object browser is powerful. It not only shows all your procedures,
but it shows the function parameters as well. You can see both
built-in and custom properties of all the referenced objects. The
object browser form is modeless, and you can search across all
or selected type libraries. You can even click on the underlined
ListBox in the parameter block for a procedure and jump directly
to the description of that object.

There’s an even easier way to view parameters. Try this:
position your cursor after the word Execute and type a space. A
small “tip” window appears with the parameters for the Execute
method. The FindText parameter looks like the one to use. VBA
http://www.windx.com

the code or set the next line to execute and continue run
includes most of the statements you are familiar with using in
Visual Basic 3.0 and 4.0. You can use the familiar InputBox
statement to allow the user to enter the last name to find and also
to enter all the lines of the address. Change the Text parameter of
the TypeText method to remove the hard-coded address; in-
stead, use the txt variable. Notice how the special VBA constant,
vbLF, is used for the ASCII linefeed character:

Sub ReplaceName()
Dim txt$
txt = InputBox("Enter lastname.")
Selection.Find.Execute (txt)
txt = InputBox("Enter Full Name")
txt = txt & vbLf & InputBox("Enter Organization")
txt = txt & vbLf & InputBox("Enter Street")
txt = txt & vbLf & InputBox("Enter City, State Zip")
Selection.TypeText Text:=txt
Selection.TypeParagraph
End Sub

It’s as simple as that. You can assign this macro to a keyboard
shortcut by selecting the Customize menu item from the Tools
menu to display the Customize dialog and clicking on the Key-
board button to display the Customize Keyboard dialog. Then
scroll down through the Categories to Macros, select the
ReplaceName macro, and press the shortcut you want to use.

DATABASE ACCESS
Any Visual Basic programmer will tell you that one of the most
powerful features of Visual Basic is its easy database access. And
anyone who works with WordBasic will tell you that easy database
access is one of the most sorely missed features. Now you have the
full power of Visual Basic database access at your fingertips.

Take your ReplaceName procedure and modify it to look up
the name in your Contact database and insert it into the Word
document. First, select the References menu item from the Tools
menu to display the References dialog. As you write VBA code,
Visual Basic looks in the object libraries that are included in this
References dialog to validate and compile your code. If you do not
include the proper object libraries, you get errors in your code.
For example, if you try to reference the Database or Recordset
object without including one of the DAO object libraries, VBA will
seem to not understand database access. By checking the
Microsoft DAO 3.5 Object Library item in the list box, however,
you have full access to these objects.
Visu

ning.
I am in the process of moving from my old
contact management software to Microsoft Outlook.
This neat new part of Office, also accessible through
VBA, will be the topic of several future columns. For
now, I’ll show you how to write the code to get the
contact information from the dBase files used by
Symantec’s Act! Contact Manager. You should be
able to easily modify these procedures to use any
database that the Microsoft Jet engine can access.

From Word, press Alt-F11 to jump to the VBA
code window, and create a new function called
LookupName. When a last name is passed as a
parameter, this function looks up the name in the
Act! Contact database and returns the full name
and address as a string with embedded linefeed
characters. Begin by dimensioning local variables
for the Workspace, Database, Recordset, and SQL
statement:

Function LookupName(Lastname$) As String

Debugger. Unlike the VBA2 debugger, the new version lets you changeFIGURE 2
al Basic Programmer’s Journal DECEMBER 1996 81

GETTING STARTED
WITH VBA
Dim ws As Workspace
Dim db As Database
Dim rs As Recordset
Dim SQL$

Then create the SQL statement to select the proper fields from
the Contact table in Act!’s database folder. Notice how I’ve
included the Lastname parameter in the SQL string by separating
its value with single quote marks. Many beginning programmers
enter this SQL string incorrectly and end up with a SQL statement
that has the word “Lastname” rather than the value of the variable
Lastname:

SQL = "Select Contact, Name, Addr1, City, State, Zip"
SQL = SQL & " From Contact Where Last_Name = '"
SQL = SQL & Lastname & "'"

Then open the Workspace, Database, and Recordset with
this SQL statement:

Set ws = DBEngine.Workspaces(0)
Set db = ws.OpenDatabase_

("c:\actwin2\database", True, True, "dBase IV")
Set rs = db.OpenRecordset(SQL)

If some records were returned in the Recordset, concatenate the
Fields from the Recordset into a single string and set the string to
the function name to return that value:

If Not rs.EOF Then
LookupName = rs(0) & vbLf & rs(1) & _

vbLf & rs(2) & vbLf & rs(3) & _
", " & rs(4) & " " & rs(5)

End If

Finally, close the local objects and set them to Nothing to free
their allocated memory:

rs.Close
db.Close
Set rs = Nothing
Set db = Nothing
End Function

Now copy the ReplaceName procedure that you wrote, and
name it ReplaceNameDB. Change the Text parameter of the
TypeText method to remove the txt variable, and instead call your
LookupName function with the txt variable as the parameter:

Sub ReplaceNameDB()
Dim txt$
txt = InputBox("Enter LastName")
Selection.Find.Execute (txt)
Selection.TypeText Text:=LookupName(txt)
Selection.TypeParagraph
End Sub

Let’s give this a try. Type a sample letter with only the last name
where the full name and address should go. Then press Alt-F8,
select the ReplaceNameDB macro, and click on the Step Into button
so that you can single-step through the code with VBA’s integrated
debugger. The input box should appear, and you can type the last
name and press Enter. Notice that when you hover the mouse over
a variable, a tip appears with the value—I love this feature! It makes
it easy to watch the flow of the procedure without having to pop up
Watch windows (see Figure 2). You can assign this macro to a
82 DECEMBER 1996 Visual Basic Programmer’s Journal
Code Online
You can find all the code published in this issue of VBPJ on The Development
Exchange (DevX) at http://www.windx.com. All the listings and associated files
essential to the articles are available for free to Registered members of DevX, in
one ZIP file. This ZIP file is also posted in the Magazine Library of the VBPJ
Forum on CompuServe. DevX Premier Club members ($20 for six months) can
get each article’s listings in a separate file, as well as additional code and utilities
for selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

Program Word with VBA 5.0
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ1296

 Listings for this article plus a Word 97 document that includes the extended
source to handle multiple last names (subscriber Premier Level): GS1296P

keyboard shortcut by selecting the Customize menu item from the
Tools menu and clicking on the Keyboard button to display the
Customize Keyboard dialog. Then scroll down through the Catego-
ries to Macros, select the ReplaceNameDB macro, and press the
shortcut that you want to use.

I’ve included complete code for the module (see Listing 1).
Obviously, this function still needs some work. For example, what
if more than one match exists for the last name? This procedure
returns only the first match. You can see how easy it is to add the
functionality you need for your ReplaceNameDB procedure. Why
don’t you try to use this base code to add some new features and
e-mail me your best results? You can access the code to my more
comprehensive application from the Premier Club of the Develop-
ment Exchange (for details, see the Code Online box).
http://www.windx.com

	Code!

