
GETTING STARTED
WITH VBA
Chop Down Errors
with the Logger Class

Create your own generic class to
log events and error conditions in
all your applications.

by Chris Barlow

the code so that the application can find a data file that the user
moved from its previous location? What does your application do
if the user forgets to insert the diskette or doesn’t connect to the
network server? Does your application keep track of the actions
taken by multiple users?

If the answers to most of these questions is “No,” don’t feel that
you’re alone. Very few programmers (yes, including me!) write code
that handles error conditions properly and completely. With the
time constraints most of us operate under, it is too convenient to
make gross assumptions about the state of the environment and the
actions of the user and just write “straight-line” code that assumes
the application can get from point A to point B without any detours.

How many of you have written and tested a neat application, then
given it to the user only to watch it crash and burn? As you walk back
to your desk pulling out your hair, you mutter, “But no one would
enter that kind of data into that field and then click on that button!”

We all know the academic solution that we learned back in
computer science class. I used to tell this to my own Computer
Science 101 classes: design your application assuming that any-
thing that can go wrong will go wrong. As you write each line of
code, imagine what branch of code might execute here, no matter
how unlikely, and add more code to handle that branch. But few of
us practice what we preach. The pressures to complete the appli-
cation are just too great. Regardless, we need to create a robust
application that will work for a wide range of users, from beginners
to advanced users. What can we do?

At SunOpTech we take a middle-of-the-road approach. We know
we can’t afford to take the time to write code to handle every
possible error. So, like a M.A.S.H. unit, we triage the potential
errors. Some errors are “code red” errorseither so rare or so bad
that we’re not going to spend any time trying to handle them
ourselves. We’ll just let Windows or Visual Basic handle these

hen you write a new application, do you try to anticipate
potential error conditions and make sure that your appli-
cation handles them gracefully? For example, do you write
http://www.windx.com

Chris Barlow is president and CEO of SunOpTech, a developer of
manufacturing decision-support applications, including the
ObjectBank and the ObjectJob Systems, where he and Ken
Henderson hold a software patent related to decentralized distrib-
uted asynchronous object-oriented systems. Chris holds degrees
from Harvard Business School and Dartmouth College, where he
worked with Drs. Kemeny and Kurtz on the Basic language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or through
SunOpTech’s World Wide Web server at www.SunOpTech.com.
errors with their own default-error processing. For example, if the
user removes the diskette while the application reads from it, the
operating system presents an appropriate message.

On the other hand, some errors are “take two aspirin” errorsso
common and easy to handle that we just automatically write the
code to deal with them. For example, if you use the Kill statement
to delete a file that doesn’t exist, you get an error. When you write
this code, you should either use the Dir statement to check in
advance whether the file really exists, or trap the potential error
with an On Error statement. Even better, you can create your own
Kill function that does this kind of checking, and call your own
function rather than just calling the Kill statement:

Function KillFile(sFile$) As Boolean
If Len(Dir(sFile)) Then

Kill sFile
KillFile = True

End If
End Function

CONTINUOUS IMPROVEMENT
However, many errors do not fit easily into either the “code red”
category or the “take two aspirin” category. How should you
handle these errors? Sadly, most programmers simply pop up a
message box saying an error occurred and then terminate the
program. This just annoys and frustrates the user. The first few
times it happens, the user may report the problem, although the
user usually cannot remember what he or she was doing before the
error occurred. After a few times, the user just clicks on the OK or
Retry button and lives with the problemand learns to hate the
program and the developer!

The even more damaging result of this “solution” is that the
programmer gets no feedback. Because there is no built-in feedback
loop to let the programmer know about these error conditions and
their causes, it is impossible to make continuous improvements to
the program so that each new version handles more of these
common errors. The philosophy of Continuous Improvement has
The Basic Test Form. When you develop a class, you
need to test it. I try to start with a simple form and

develop it as I develop the class, to test each method.

FIGURE 1
Visual Basic Programmer’s Journal OCTOBER 1996 71

GETTING STARTED
WITH VBA
been crucial to the success of many modern
enterprises, but generally ignored in soft-
ware development.

The critical first step in continuous im-
provement is to make sure that you know
where the error occurred in your applica-
tion, and that you can trace how the user got
to that point. This means your program
must be able to log its actions and any errors
that occur, in a form that is flexible and
transparent to the user. Even better, if you
create an adjustable level of logging based
on the severity of the error, you can fine-tune
the logging to your needs. That way you can
have intensive logging during development
and initial testing of your application, and
less logging as the application matures.

A complete yet flexible logging system
allows you to analyze your application in
operation, identify the common errors,
and develop a solution that improves your
application and reduces the “hassle fac-
tor” for the user. When Stan Schultes joined
SunOpTech, he developed a Debug mod-
ule that SunOpTech uses in all its VB3
applications to control the error logging
process. I’ll re-create this module in this
month’s column.

Stan designed the module to accom-
plish several important goals. For example,
the logging class allows you to easily create
a record of your application’s actions and
errors through a series of log entries. Each
72 OCTOBER 1996 Visual Basic Programmer’

l

f

-

-
:

Usi
log entry contains standard information
about the current time, program, version,
and user, and it’s easy to add a variable
amount of other data, depending on the
event. He also designed the logging notifica-
tion method to be flexible. It logs certain
conditions quietly, while for others it lets
you notify the users. It allows you to adjust
the logging severity level based on the ma-
turity of the application and the experience
of the user. It also allows you to globally
turn off certain logging methods.

DESIGNING A LOGGING CLASS
Let’s begin by defining the properties and
methods for the cLogErr class. Start a new
VB4 project and insert a class module. View
the class module properties by pressing F4,
and change the name to cLogErr.

You need to define a property for the log
file name and other properties to hold the
general information that you want to ap-
pear in every logging entry:

Public LogFile As String
'Path and name for log file
Public System As String
'System name to log
Public Program As String
'Program name to log
Public Version As String
'Program version to log
Public User As String
s Journal

ng All the Bits in an Integ
'User name to log

Then define properties to control the
severity of log entries to process, whether
to overwrite or append to the log file, and
the global properties to control the three
logging methods I’ll describe. The log file
should allow you to use any combination of
these methods for any individual logging
event. The first method writes the log entry
to an ASCII file, and the second method
displays the log entry in the debug window.
The second method is useful only when
running in design mode. The third method
pops up a message box showing the log
entry. You can easily extend the class to
support other methods such as e-mail or
Internet notification:

Public Append As Boolean
' whether to erase log file
Public Severity As Integer
' only log entries < this
Public DoFile As Boolean
' show in log file
Public DoMsg As Boolean
' show in message box
Public DoDebug As Boolean
' show in 'debug window

You want to be able to use this class
with a minimum of setup work, so put
some defaults in the Class_Initialize event
er

s
-

d
b
o -
ments.—C.B.
We use so many new things in Visua
Basic that we tend to forget some of the
old programming techniques. One o
the methods I still use often is to pack a
lot of information into a function’s argu
ment by using the individual binary
bits of an integer parameter. Because
an integer has 16 binary bits, you can
actually pass 16 true/false or yes/no
values within a single integer.

For example, in the logging class you
can specify which logging method you
want to use for an individual log entry
by calling the LogIt method with sepa
rate arguments for each logging method

MyLog.LogIt DoFile:=True, _
DoDebug:=True, DoMsg:=True, _
"Invalid File Error"

But this makes it difficult to add new
logging methods because to add one
you need to add a new argument to the
function call. A more flexible method
combines the logging method into a
single integer value in much the same
way the Visual Basic MsgBox function
operates.
If you want to display a message box
with an OK button, a Cancel button, and
an exclamation point, you call the Visual
Basic MsgBox function with the buttons
argument equal to two constants added
together: vbOKCancel + vbExclamation.
This actually passes a binary 11001 to
the function. The function uses these
bits to determine which options have
been selected.

You can use this same technique to
provide flexible options to your logging
class. If you pass a LogMethod argument
with each logging event, you can use bits
5, 6, and 7 to control logging to a file,
debug window, and message box. You
can use bits 1-4 to indicate the severity
level of this event or error. For example,
if you set up some constants to mask the
appropriate bits:

Const FileMask = &H10
'mask all but bit 5
Const DebugMask = &H20
'mask all but bit 6
Const MsgMask = &H40
'mask all but bit 7
Const LevelMask = &HF
'mask bits 5-8

you can write a function that return
a LogMethod argument by combin
ing several arguments into a single
integer:

Public Function
MakeLogMethod(Severity _

As Byte, bFile As Boolean, bDebug _
As Boolean, bMsg As Boolean) As _
Integer

Dim iLogMethod%
iLogMethod = Severity
If bFile Then iLogMethod = _

iLogMethod + FileMask
If bDebug Then iLogMethod = _

iLogMethod + DebugMask
If bMsg Then iLogMethod = _

iLogMethod + MsgMask
MakeLogMethod = iLogMethod
End Function

This function gives the application
eveloper the alternative of setting the
it-oriented integer argument directly
r using this method with explicit argu
http://www.windx.com

GETTING STARTED
WITH VBA
to set these properties to default values. You can make use of the
version information and the App object to set these defaults:

Private Sub Class_Initialize()
Program = App.EXEName
LogFile = App.Path & "\" & Program & ".log"
System = Program
Version = App.Major & "." & App.Minor _

& "." & App.Revision
User = "Anonymous”
Append = True
DoFile = True
DoMsg = True
DoDebug = True
Severity = 8
End Sub

The first method your class will support is the Init method to
initialize the logging. In most cases, you call this method at the
beginning of the application program to change from the default
properties. For example, you can use the Init method to set the actual
user name in the User property of the class. Design this method with
arguments using the Optional keyword so that you need to specify
only those arguments that are different from the default. Then you
can use the IsMissing function to change only the passed properties:

Public Sub Init(Optional sProg, Optional sLogFile, _
Optional sSYS, Optional sVer, Optional sUser, _
Optional bAppend, Optional bFile, Optional bMsg, _
Optional bDebug, Optional iSeverity)

'Set missing parameters to defaults
If Not IsMissing(sProg) Then Program = sProg
http://www.windx.com
If Not IsMissing(sLogFile) Then LogFile = sLogFile
If Not IsMissing(sSYS) Then System = sSYS
If Not IsMissing(sVer) Then Version = sVer
If Not IsMissing(sUser) Then User = sUser
If Not IsMissing(bAppend) Then Append = bAppend
If Not IsMissing(bFile) Then DoFile = bFile
If Not IsMissing(bMsg) Then DoMsg = bMsg
If Not IsMissing(bDebug) Then DoDebug = bDebug
If Not IsMissing(iSeverity) Then Severity = iSeverity

If DoFile Then LogIt FileMask, _
"Init", "...Logging Initialized..."

End Sub

This allows the application to call this method and specify
only the necessary parameter:

Private Sub butInit_Click()
MyLog.Init sUser:="Chris"
End Sub

THE LOGIT METHOD
The second method, LogIt, does the actual logging. Many standard
logging modules fail in this area because they restrict the format of
the log entry to a specific number of fields. Because most log files
store data in a delimited format, most standard logging modules
either specify a fixed set of parameters or they require the applica-
tion to preformat the log entry with delimiters.

In VB4, you can design a flexible method that allows the appli-
cation to use your class with any number of arguments. When you
declare a function using VB4’s new ParamArray keyword with the
last parameter, you can pass an arbitrary number of arguments.
The function retrieves an argument as an array of variant elements:

Public Sub LogIt(iLogMethod%, ParamArray Args())

The first argument for the LogIt method is the LogMethod. This
argument combines a severity level and a log method into a single
integer that the function can interpret (see the accompanying
sidebar, “Using All the Bits in an Integer”).

The next step in the procedure is to dimension two local
variables: LogLine, to contain the standard information for the log
entry, and ArgLine, to tab delimit the arbitrary number of argu-
ments. Here you can check whether this log entry exceeds the
current Severity property in order to control the level of logging for
this event. If the first byte of the LogMethod is greater than the
Severity, you can exit the procedure:

Dim LogLine As String
Dim ArgLine As String
Dim i As Integer
If (iLogMethod And LevelMask) > Severity Then Exit Sub

You create the LogLine string by concatenating the current date
and time to the Program, Version, and User properties of the class:

LogLine = Format(Now, "dd-mmm-yy hh:mm:ss")
LogLine = LogLine & vbTab & Program
LogLine = LogLine & vbTab & "V" & Version
LogLine = LogLine & vbTab & User

You create the ArgLine string by stepping through each
element in the ParamArray:

For i = LBound(Args) To UBound(Args)
The Complete Test Form. When the class nears
completion, I create a more comprehensive test form to

really put the class through its paces.

FIGURE 2
Visual Basic Programmer’s Journal OCTOBER 1996 73

GETTING STARTED
WITH VBA
ArgLine = ArgLine & Args(i) & vbTab
Next

Finally, when you have set the proper bit for a logging method,
call the appropriate procedure to complete the log entry:

If iLogMethod And FileMask Then LogToFile LogLine, ArgLine
If iLogMethod And DebugMask Then LogToDebug ArgLine
If iLogMethod And MsgMask Then LogToMsgBox ArgLine
End Sub

The actual logging methods are quite simple. Just check the
global property to ensure that you have enabled this method,
then call the standard VB function:

Public Sub LogToFile(LogLine$, ArgLine$)
Dim FileNum%
If DoFile Then

If Not Append Then KillFile LogFile
FileNum = FreeFile
Open LogFile For Append Shared As #FileNum
Print #FileNum, LogLine & vbTab & ArgLine
Close #FileNum

End If
End Sub

Public Sub LogToMsgBox(sMsg$)
If DoMsg Then MsgBox sMsg
74 OCTOBER 1996 Visual Basic Programmer’s Journal

End Sub
Public Sub LogToDebug(sMsg$)
If DoDebug Then Debug.Print sMsg
End Sub

In the complete source code for the cLogErr class module, I
added a Display method that returns the contents of the log file.
You can get this code listing on the Registered Level of the
Development Exchange (for details, see the Code Online box at the
end of this article).

TESTING THE CLASS
When you develop a class, you need to test it. I try to start with a
simple form and develop it as I develop the class, to test each method
(see Figure 1). When the class nears completion, I create a more
comprehensive test form to really put the class through its paces
(see Figure 2). You can get the code for the more comprehensive test
application from the Premier Club on The Development Exchange
Web site (for more information, see the Code Online box at the end
of this column). Here, I’ll cover how to create the simple form.

First, add the code to the form to create an instance of the
cLogErr class:

Option Explicit
Dim MyLog As New cLogErr

Then place this code in the Init button Click event to initialize
the class and change the default User property:

Private Sub butInit_Click()
MyLog.Init sUser:="Chris"
End Sub

Then put this code in the Test button Click event to call the
LogIt method so that the text will be written to the log file:

Private Sub butTest_Click()
MyLog.LogIt 16, "This is a test"
End Sub

Finally, code the message box statement to display the log of
the Display button Click event:

Private Sub butDisplay_Click()
MsgBox MyLog.Display
End Sub

With this flexible logging class, you can write your application
code to easily provide the feedback required to implement Continu-
ous Improvement. If you belong to the Premier Level of The Develop-
ment Exchange, be sure to get the comprehensive test app code.
Code Online
For all the current issue’s listings in one file, go to the Registered Level of The
Development Exchange (http://www.windx.com), The Microsoft Network
(GO WINDX), or CompuServe VBPJ Forum’s Magazine Library (GO VBPJ).
Development Exchange Premier Level subscribers ($20 for six months) can
get each article’s listings in a separate file, as well as additional code and
utilities for selected articles, plus archives of all code ever published in VBPJ
and Microsoft Interactive Developer magazines.

Chop Down Errors with the Logger Class
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ1096
Listings for this article plus both the simple and comprehensive test applica-
tions, as well as the Logger class module (subscriber Premier Level): GS1096P
http://www.windx.com

