
GETTING STARTED
WITH VBA

GETTING STARTED
WITH VBA

Click & Retrieve

Source

CODE!
Create your own generic AboutBox
to use in all your applications.

It’s About Time
version of your EXE file.

by Chris Barlow
find that one of their first common forms is an AboutBox form
used to display an application’s name, version, and copyright.
This form, usually displayed at the startup of the program and
from an About menu item on the Help menu, will be visible in
every application you write.

I’ll show you how to develop a generic AboutBox form that
you will be able to use in all of your applications. You can
develop your AboutBox to do more for you than just display a
simple form—it’s a convenient place to embed some of the
routines you might want to run at the startup of your applica-
tion, such as routines that test whether the operating system is
Windows 95 or Windows NT, check the type of processor, and
so forth. Because VB4 lets you create custom properties and
methods for your forms, you can write some public procedures
that will be useful to your entire application.

The other neat thing about VB4 is the version information
that you can include in your EXE by using the EXE Options dialog
(see Figure 1). You can add automatic version numbering, the
product name, your company name, copyright and trademark
information, and a general comment.

The code you will write from this column will work in any of the
VB 32-bit editions. Create a new project, put a command button
on Form1, and set the command button’s Caption property to
“About…” Because this application will call your generic AboutBox,
save this project as “Demo AboutBox.” Then insert another form
into the project and change the Name to AboutBox. You will
include this generic AboutBox form in each of your projects.

The AboutBox form will usually be displayed as a modal
dialog, so you should change some of its default properties so it
looks like a standard modal dialog. First, change the BackColor to
a standard gray using the colors dialog. Then set the BorderStyle
property to FixedSingle so there are no resize handles on the
form. Then change the ControlBox property to False so no control

s you begin to write complete Visual Basic applications,
you will start to develop your own common pieces of
code that you use again and again. Most programmers
http://www.windx.com

Chris Barlow is president and CEO of SunOpTech, a developer of
manufacturing decision-support applications, including the
ObjectBank and the ObjectJob Systems, where he and Ken
Henderson hold a software patent related to decentralized distrib-
uted asynchronous object-oriented systems. Chris holds degrees
from Harvard Business School and Dartmouth College, where he
worked with Drs. Kemeny and Kurtz on the Basic language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or through
SunOpTech’s World Wide Web server at www.SunOpTech.com.
box menu appears when the user clicks on the upper-left corner
of the form. Also, set the MaxButton, MinButton, NegotiateMenus,
and ShowInTaskbar properties to False.

You’ll need to draw some controls on your AboutBox form.
Place an Image control in the upper-left corner for the applica-
tion icon, and set the Name property to imgIcon. Next to the
Image control, add a Label control to display the application
title. Set the Name property to lbProgram and set the Font to
Bold, 18 point. Then add four more Label controls to the form
and set the Name properties to lbVersion, lbCopyright, lbInfo,
and lbComments. Add a Line control to separate the sections of
the form after the lbCopyright Label control and after the lbInfo
Label control. Finally, add a command button in the lower-right
corner and set the Name property to butOK (see Figure 2).
.

:

Double-click on the butOK and add code. Note that you should
hide the form rather than unload it so that the properties and
methods are available to the calling application:

Private Sub butOK_Click()
'Hides the form when OK clicked
AboutBox.Hide
End Sub

Now is a good time to set up the public properties of this form
The first property will be a public variable of type Form called
fCallingForm. This variable will be used to hold a pointer to the
form that launched the AboutBox. This way, you can center the
AboutBox form over the calling form and display the proper icon

'Calling app set this for icon/centering
Public fCallingForm As Form

The calling form also uses the next property to determine
The EXE Options Dialog. Using Auto Increment is a
great way to make sure that you are running the properFIGURE 1
Visual Basic Programmer’s Journal SEPTEMBER 1996 91

GETTING STARTED
WITH VBA
whether or not the OK button will be visible on the AboutBox. The
user can see the AboutBox at the start of an application because the
application’s first Form_Load event shows the AboutBox
nonmodally, and then the end of the Form_Load event hides it. The
program displays the AboutBox this way to give the user some-
thing to see while the application’s initialization code is executing.
Typically, you will not see the OK button during this process. When
the user selects the About menu item on the Help menu after the
application has started, however, the program displays the
AboutBox modally and the OK button is visible:

Public ShowOK As Boolean

The other variables, listed here, will hold various public
properties that will be available to the calling application as long
as the AboutBox form remains loaded:

Public lPlatform As Long
Public sPlatform As String
Public sVersion As String
Public lProcessor As Long
Public lTotalMem As Long
Public lAvailMem As Long

EXE OPTIONS
Now that you have designed the forms, you should set up your
calling application with some information to be displayed in the
AboutBox. Display Form1 and set the Icon property to the icon
you want to use. Visual Basic provides a good selection of
92 SEPTEMBER 1996 Visual Basic Programmer’s Journal
interesting icons
in the Icons
folder.

Select the
Make EXE File
menu item from
the File menu and
click on the
Options button to
display the EXE
Options dialog
(see Figure 1).
The Version Num-
ber is made up
of three long
integers: Major,

Minor, and Revision. If you check Auto Increment, the Revision will
be incremented every time you make an EXE file. Then type a more
meaningful name in the Application Title. In the Version Informa-
tion section, add text for the Comment, Company Name, Legal
Copyright, and Legal Trademarks sections. Note that you can
insert the standard symbol for copyright (©) by holding the Alt key
and using the numeric pad to type 0169. Similarly, you can insert
the standard registered trademark symbol (®) by holding the Alt
key and using the numeric pad to type 0174. Now click on the OK
button to make an EXE file.

You should find it easy to add the code in Form1 to drive the
AboutBox demo. In the Form_Unload event, add the End state-
ment to terminate the program:

Private Sub Form_Unload(Cancel As Integer)
End
End Sub

Then add the code in the CommandButton control’s Click event
to set two properties and show the form. First, set the fCallingForm
property to the application’s main form. Then set the ShowOK
property to True so that the OK button will be displayed. Finally,
show the AboutBox with the vbModal argument:

Private Sub Command1_Click()
Set AboutBox.fCallingForm = Me
AboutBox.ShowOK = True
AboutBox.Show vbModal
End Sub

ABOUTBOX CODE
You’re ready to begin adding code to the AboutBox form. You
can use your pointer to the calling form in the fCallingForm
property to set the Image control’s Picture property to the
calling form’s icon. That way, your generic AboutBox will prop-
erly display each application’s icon. You can also use the calling
form’s dimensions to center the AboutBox over that form. This
form is also a good place to set the Visible property of the butOK
control to the value of the ShowOK property:

Private Sub Form_Load()
ImgIcon.Picture = fCallingForm.Icon
'Center the AboutBox over the calling form
Move fCallingForm.Left + _

(fCallingForm.Width - Width) \ 2, fCallingForm.Top + _
(fCallingForm.Height - Height) \ 2

butOK.Visible = ShowOK

Then set both the AboutBox caption and some of the labels
The AboutBox Form Controls. You
can easily change the location of these

controls to design your own AboutBox format.

FIGURE 2
http://www.windx.com

GETTING STARTED
WITH VBA
on the AboutBox that came from properties of the application’s
App object:

AboutBox.Caption = "About " $ App.EXEName
lbprogram = App.Title
lbCopyright = App.LegalCopyright

lbComment = App.Comments

93 SEPTEMBER 1996 Visual Basic Programmer’s Journal
When the AboutBox is displayed, a decimal point usually
separates the Major and Minor components of the application’s
Version Number, and sometimes a decimal point also separates
the Revision. You can write a function that will properly format
the version. The function can even use the new Optional argu-
ment in VB4. Notice how the IsMissing function formats the
number differently if the application does not pass the Revision.
If you define this function as public, then it can be used else-
where by your calling application:

Public Function FormatVersion(Major&, _
Minor&, Optional Revision) As String

If IsMissing(Revision) Then
FormatVersion = Format(Major, "#0.") & Format(Minor, "00")

Else
FormatVersion = Format(Major, _

"#0.") & Format(Minor, "00.") & _
Format(Revision, "0000")

End If
End Function

You can use this FormatVersion function in the AboutBox’s
Form_Load procedure to display the application’s version
number:

lbVersion = "Version: " & FormatVersion(App.Major, _
App.Minor, App.Revision)

If you run your application now and click on the About button,
you should see your generic AboutBox form appear with the
information from the App object and the proper icon. While this
may be fine for many applications, the AboutBox can also be a
convenient place to encapsulate some other procedures. For
example, some applications need to operate differently on Win-
dows 95 than they do on Windows NT. You could write a proce-
dure that uses an API call to check the operating system platform.
If you save the result in a public property in addition to displaying
it on the AboutBox, then you could write code in the calling
application to branch to a different block of code based on the
platform. Similarly, the version of Windows that is running can be
important. The application might need to know, for example,
whether it’s running on version 3.50, 3.51, or 4.0 of Windows NT.
You can add some procedures that call the Win32 API to detect,
store, and display some of this information. You may want to add
other information that is important to the applications you write.

When you install VB4, it creates a WinAPI folder that contains
some handy tools to view the Declares, Types, and Constants for
the Win32 API. The ApiLod32 program can load a text file and
create an Access database that makes it easy to search for the
proper function. Copy the Declare along with the associated Type
and Constants to your Visual Basic program. For example, the
GetVersionEx function will complete a special user-defined type
variable, often called a structure, with information about the
Windows version and platform. It uses the OSVERSIONINFO
structure and three constants that begin with VER. You can use
the ApiLod32 application to search the API database, locate these
values, and copy them to your program (see Figure 3). Then you
can define a variable, lpVerInfo, of type OSVERSIONINFO (see
Listing 1). For more information on the GetVersionEx function,
see the Programming Techniques column in this issue.

I suggest writing a separate public procedure called
GetOSPlatform to make this API call (see Listing 2). That way,
you can use GetOSPlatform for display purposes in your
AboutBox, but the calling application can call the function
directly if it needs just a portion of the information. Like many
The API Viewer. Visual Basic provides most of the
functionality you will need, but don’t be afraid to use API

calls when they can help.

FIGURE 3
http://www.windx.com

GETTING STARTED
WITH VBA

function directly, however, if it needs only a portion of the information.

variable, lpVerInfo, of type OSVERSIONINFO.

Many developers hide their “Easter egg” in the AboutBox. An “Easter
structures, the first member contains the length of the struc-
ture, which must be filled out before you call the function. In this
case, you set the dwOSVersionInfoSize to Len(lpVerInfo) and
then call the GetVersionEx function. The resulting dwPlatformID
is saved in the 1Platform property of the form and the text
version is saved in the sPlatform property. The sVersion prop-
erty is set to the formatted Windows version. Finally, the 1Plat-
form is returned in the function call.

Notice that VB4 lets you call a function procedure as if it
were a subprocedurethat is, a procedure with no return
value. If the return value does not interest you, let the compiler
“swallow it.” If you add this single line of code to the Form_Load
procedure, the version and platform information will be avail-
able in your form’s properties to place in the lbInfo control:

GetOSPlatform
lbInfo = sPlatform & " Version: "
lbInfo = lbInfo & sVersion

Now run the application and you should see your generic
AboutBox (see Figure 4). This neat piece of reusable code will fit in
most of your applications. You can probably think of several ways to
94 SEPTEMBER 1996 Visual Basic Programmer’s Journal

expand its functionality. In the sample code available to Registered
members of The Development Exchange Web site (see the “Code
Online” box at the end of this column for details), I have added
several other API function calls that show the type of processor and
current state of virtual memory on the AboutBox form.

EASTER EGG
Just for fun, add one more bit of code to your generic AboutBox.
egg” is that fun piece of
code that displays some
information about the
development team when
you press a specific se-
ries of keys.

First, add another
Image control to the
form and change the
Name property to
imgEgg. Then insert any
picture fileperhaps a
picture of the develop-
ment team. You will dis-
play this picture only
when the user first dis-
Code Online
For all the current issue’s listings in one file, go to the Registered Level of
The Development Exchange (http://www.windx.com), The Microsoft Network
(GO WINDX), or CompuServe VBPJ Forum’s Magazine Library (GO VBPJ).
Development Exchange Premier Level subscribers ($20 for six months) can get
each article’s listings in a separate file, as well as additional code and utilities
for selected articles, plus archives of all code ever published in VBPJ and
Microsoft Interactive Developer magazines.

It’s About Time
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ0996
Listings for this article plus EXE, VBP, FRM, and FRX files associated with the
AboutBox application (subscriber Premier Level): GS0996P

plays the AboutBox, then double-clicks on the icon in the
AboutBox, then clicks on the OK button, then displays the
AboutBox again and double-clicks on the icon again. If all of these
events happen in this order, you can set the imgIcon control’s
Picture property to the imgEgg control’s Picture property to
display your Easter egg.

Add a private integer property to your form called iEasterEgg
to hold a counter. Then add this code to the imgIcon control’s
DblClick event:

Private Sub ImgIcon_DblClick()
If iEasterEgg = 0 Then iEasterEgg = 1
If iEasterEgg = 2 Then ImgIcon.Picture = imgEgg.Picture
End Sub

Then add this code to the butOK_Click event:

If iEasterEgg = 1 Then
iEasterEgg = 2

Else
iEasterEgg = 0

End If

Try to display the Easter egg with the sample code on the
Registered Level of The Development Exchange Web site and
see what you get.
LISTING 1 Of Versions and Variables. Once you have used
ApiLod32 to search the API database, locate the

OSVERSIONINFO structure and three constants that begin with
VER, and copy them to your program, you are ready to define a

Private Type OSVERSIONINFO
dwOSVersionInfoSize As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwPlatformId As Long
szCSDVersion As String * 128

End Type
' dwPlatformId defines for OSVERSIONINFO structure
Const VER_PLATFORM_WIN32s = 0
Const VER_PLATFORM_WIN32_WINDOWS = 1
Const VER_PLATFORM_WIN32_NT = 2
Private Declare Function GetVersionEx Lib "kernel32" _
Alias "GetVersionExA" (lpVersionInformation As _
OSVERSIONINFO) As Long

Private lpVerInfo As OSVERSIONINFO
LISTING 2 Platform on Display. This separate public procedure
allows you to use the GetOSPlatform API call for display

purposes in your AboutBox. The calling application can call the

Public Function GetOSPlatform() As Long
lpVerInfo.dwOSVersionInfoSize = Len(lpVerInfo)
GetVersionEx lpVerInfo
lPlatform = lpVerInfo.dwPlatformId
If lPlatform = VER_PLATFORM_WIN32_NT Then
sPlatform = "Microsoft Windows NT"

Else
sPlatform = "Microsoft Windows 95"

End If
sVersion = FormatVersion(lpVerInfo.dwMajorVersion, _
lpVerInfo.dwMinorVersion)

GetOSPlatform = lPlatform
End Function
The Completed AboutBox.
Get this from the The

Development Exchange Web site to find
the Easter egg.

FIGURE 4
http://www.windx.com

	CODE!

