
GETTING STARTED
WITH VBA
Create a Windows 95 Explorer-
style database explorer.

Explore your
Enterprise
CSplitter class works.

by Chris Barlow
SunOpTech, we use this new paradigm in our ObjectJob Ex-
plorer, which is part of our ObjectJob manufacturing decision-
support system. The ObjectJob Explorer allows the user to
explore his or her enterprise, examining the available capacity
of plants, departments, work cells, and machines based on the
current jobs in the system (see Figure 1). We have found that
users can easily explore their enterprise with the ObjectJob
Explorer because it provides them with a familiar interface.
The familiarity shortens training time and increases the pro-
ductivity of new users. You can write a similar application
using two of the new controls built into Visual Basic 4.0: the
TreeView and the ListView.

In the last several columns, I’ve written about the new
controls available in Visual Basic 4.0 Professional Edition with
Windows 95, including the RichTextBox, CommonDialog,
ToolBar, and StatusBar controls. Last month I showed how to
develop your own Visual Basic class to create splitter win-
dows, which are an integral part of the explorer interface. This
month we’ll look at the TreeView and ListView controls that
allow you to create the main windows of an explorer such as
the ObjectJob Explorer.

If you are a confirmed Windows 95 user like me, you have
probably been using the Windows Explorer to examine the
folders and documents located on your computer and on other
computers around the network. If you haven’t used it yet, right-
click on the Start button and select Explore.

The left window displays a hierarchy of data: My Computer,
Network Neighborhood, Recycle Bin, and My Briefcase. This
hierarchy begins with your Desktop and displays the nodes
that are the next level down in the hierarchy, also known as the
child nodes.

As you click on the plus symbol next to a node, that branch

ou can write some neat applications using the same
“explorer” paradigm that Microsoft used in Windows
95 (and now Windows NT 4.0). At my company,
Chris Barlow is president and CEO of SunOpTech, a developer of
manufacturing decision-support applications including the
ObjectBank and the ObjectJob Systems, where he and Ken
Henderson hold a software patent related to decentralized distrib-
uted asynchronous object-oriented systems. Chris holds degrees
from Harvard Business School and Dartmouth College where he
worked with Drs. Kemeny and Kurtz on the BASIC language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or through
SunOpTech’s World Wide Web server at www.SunOpTech.com.

http://www.windx.com
of the hierarchy expands to display the underlying child nodes.
Expanding the My Computer node displays Floppy Drive A,
Hard Drive C, CD-ROM Drive D, Control Panel, Printers, and
Dial-up Networking. Expanding the Hard Drive C node displays
the folders (subdirectories for you Windows 3.x readers) on
the C drive.

Quite a bit of functionality is built into this window. A single
click on the folder name changes the display to a text box where
you can type in a new name for the folder. You can drag and drop
a folder to a new location. Right-clicking on a node gives you a
popup menu for actions related to this node. The neat thing is
that you can implement this same functionality in your Windows
95, 32-bit Visual Basic programs using the TreeView control that
comes with the Professional and Enterprise editions.

Similarly, you can use the ListView control to duplicate the
functionality of the right window of the Windows Explorer.
Notice that as you click on a node in the left window, the right
window displays information about the child nodes. The infor-
mation in the right window can be displayed in four different
ways: large icons, small icons, list view, and detail view. You
can single-click on one of the items in the right window to
change the display to a text box where you can type in a new
name for that item. You can also drag and drop between the
right and left windows.

Finally, the vertical line between the left and right windows
allows the user to change the vertical split to widen or narrow
these windows. I’ve included my code for the CSplitter class
with the source code for this column. Take a look at my May
1996 column, “Split Your Windows,” for details on how the
Let’s Go Exploring. Notice how easy it is to explore all
the plants, departments, and machines in the enterprise

and see the job data. The Sun US node represents the Organization;
Sarasota #1 is one of the Plants; Shipping, Assembly, and Machining
are Departments; BLT is a Cell; and Tsugami, Fadal, and so on, are

FIGURE 1
Machines.

Visual Basic Programmer’s Journal JUNE 1996 73

s
t
t
h
i
u
a
y
i
t

w
y
B
w
f

GETTING STARTED
WITH VBA
EXPLORING A DATABASE
The Windows Explorer is used to explore a drive. Its “data”
consists of the folders and documents on the drive. The ObjectJob
Explorer, however, explores a database containing information
about the jobs being produced in a manufacturing plant. Each
time the user clicks on a node, the app will read data from the
database and display it in the explorer windows.

I’ve included with the source code a greatly simplified access
database, OBJobExp.MDB, that contains the hierarchy relation-
ship shown in Figure 2. Each Machine is located within a Cell, and
each Machine has a daily Supply (how long the machine will run
each day) in seconds. Cells are located within a Department,
Departments are located within a Plant, and Plants are located
within an Organization. Finally, Jobs are assigned to a particular
machine and each Job is for production of a certain ItemCode,
quantity, and load.

Each table in this simplified database has a field that links its
records to a single record in its “parent” table in a traditional one-
to-many relationship. For example, because the parent of the
Plants table is the Organization table, each record in the Plants
table has an OrgID field that contains one of the OrgIDs in the
Organization table to indicate the Organization that this Plant is
part of. Similarly, because the Departments table is the child of
the Plants table, you will find a PlantID in every record in the
Departments table to link the Department to its Plant.

In the left window, using the TreeView control, you’ll want to

display this hierarchy of Organizations, Plants, Departments, and
o on. When the user clicks on a Machine node, you’ll want to fill
he ListView control in the right window with data from the Jobs
able for that Machine (see Figure 1). When the user clicks on a
igher node in the hierarchy, you’ll want to display summary

nformation about the children of that node. For example, if the
ser clicks on a Cell (see Figure 3), you would display information
bout the percent utilization of each Machine in the Cell. Because
ou want your program to be fast no matter how many Jobs are
n the database, you’ll want to read the database for Job informa-
ion only after the user has clicked on a Machine node.

CREATING THE INTERFACE
Enough backgroundlet’s start developing the application. Start
a new project in Visual Basic. Select the Custom Controls menu
item from the Tools menu, and make sure the Microsoft Windows
Common Controls box is checked so that the TreeView and
ListView controls are in your toolbox.

Draw a TreeView control on the left side of the form and draw
a ListView control on the right side of the form. Add label controls
under each of these controls. Then put a long, narrow
CommandButton control to divide the left and right windowsthis

ill be your splitter control. Finally, add an ImageList control to
our form to contain the images you’ll display for each node.
ecause this control will be invisible at run time, it doesn’t matter
here you locate it. Your form should look something like the

orm in Figure 4.
If you look again at Figure 3, you’ll see that the nodes of the
The Database Table Relationship. Access allows
you to set the table relationships and support cascading

updates and deletes.

FIGURE 2
or ListView controls.
The Cell Node. It is easy to display summary information,
such as overall machine utilization, when the user

clicks on parent nodes.

FIGURE 3
The ObjectJob Explorer Form. These controls will be
automatically realigned by the Csplitter class.FIGURE 4
The ImageList Control. It is easy to add your own
images to this control and display them in the TreeViewFIGURE 5

GETTING STARTED
WITH VBA
TreeView control contain different images. Both the TreeView
and ListView controls can display any of the images contained in
the ImageList control. I’ve loaded six images into the ImageList
control and given each image a Key that you can reference to load
that image into one of the controls (see Figure 5). You’ll need to
set the ImageList property of the TreeView and ListView controls
to point to this ImageList control.

Now add the CSplitter and CSplittee class modules to your
project. Don’t worry if you haven’t had a chance to download
those source files yet; your application will work, but you won’t
have the functionality of a splitter window.

The code for the ObjectJob Explorer begins by declaring four
private variables for the application to use. MySplitter is your
instance of the CSplitter class, and the Boolean variable Splitting
is set to True when the mouse is moving the splitter control to
change how the window is split. Similarly, the InDrag variable is
set to True when the user is dragging a node to another location.
Define the variable nodX as a Node object and use it to hold the
node being dragged:

Option Explicit
Private MySplitter As New CSplitter
Private Splitting As Boolean
'True when splitting
Private InDrag As Boolean
'True when Dragging.
Private nodX As Node
'Item that is being dragged.

The code in the Form_Load event registers the controls with
the CSplitter class and calls the LoadTree procedure to load the
TreeView control with the information from the database:

Private Sub Form_Load()
'register the splitter control
MySplitter.Register butSplit

'indicate the left window controls
MySplitter.Add TreeView1, True, True
MySplitter.Add lbLeft, True, False

'indicate the right window controls
MySplitter.Add ListView1, False, True
MySplitter.Add lbRight, False, False

'load the tree from the database
LoadTree
End Sub

LOADING THE TREE
Because the OBJobExp database may contain many jobs, but
only a small number of machines, you can load the entire
TreeView control in a single procedure. Begin by loading data
from the top-level Organization table into the TreeView control.
The first step is to open the database and open a record set
containing the proper data. The OpenDatabase statement uses
the Path property of the App object to point to the database in
the same location as the application. The OpenRecordset method
of the Database object opens the highest-level table in the
hierarchy, the Organization table:

Dim db As Database
Dim rs As Recordset
Dim SQL$

Set db = OpenDatabase(App.Path & “\OBJobExp.mdb”)

75 JUNE 1996 Visual Basic Programmer’s Journal
Set rs = db.OpenRecordset(“Organization”)

Like most of the other new VB4 controls, the TreeView control
is made up of a collection of objectsin this case, Node objects.
Use the Add method of the Nodes collection to add Node objects
to the control. The Add method can take six arguments, but only
one is required: the text to display for the Node. In your code for the
top-level nodes you’ll only need to use two additional arguments:
the image to display and the unique key for this node.

Warning: there is a trick to creating a unique key for a Node. The
Key is a string property, but you can’t just convert a number to a
string with the CStr function and use that as the Key. The control
requires that the Key be alphanumeric. The technique I used is to
concatenate the numeric ID from the database to the first letter of
the table name to create a unique key.

LIKE MOST OTHER NEW VB4 CONTROLS,

 THE TREEVIEW CONTROL IS MADE UP OF

 A COLLECTION OF OBJECTS—IN THIS

 CASE, NODE OBJECTS.

Now you can add a top-level Node to the Nodes collection for
each record in the Organization table by looping through the
record set while the EOF property is not True. The ID is in the
first field of the record set, and the name is in the second field.
I used the image from the ImageList control with the Key of
“world.” After adding the node, use the MoveNext method of the
Recordset and then close the record set when finished:

Do While Not rs.EOF
Set nodX = TreeView1.Nodes.Add(, , "O" & rs(0), _

CStr(rs(1)), "world")
rs.MoveNext

Loop
rs.Close

Now that you have nodes for each of the Organizations in
your database, you can add nodes for each of the Plants and link
them to their Organization node. To make this link and insert the
node in the proper location, use two of the optional arguments
in the Add methodthe Relative and Relationship arguments.
Set the Relative argument to the ID of the parent organization
and set the Relationship argument to tvwChild. Use the same
trick to create a unique key for the plant nodes by beginning the
key with the letter P. Use the “plant” image for these nodes:

Set rs = db.OpenRecordset("Plants")
Do While Not rs.EOF

Set nodX = TreeView1.Nodes.Add("O" & rs(2), _
tvwChild, "P" & rs(0), CStr(rs(1)), "plant")

rs.MoveNext
Loop
rs.Close

You can use almost this same code for the Departments,
Cells, and Machines tables. Don’t forget to close your database
at the end with code like this:
http://www.windx.com

GETTING STARTED
WITH VBA
rs.Close
Set rs = Nothing
db.Close
Set db = Nothing
End Sub

Try running your app now. You should see the filled TreeView
control and you should be able to expand and contract all the
nodes in the tree. Neat!

CLICK AND LIST
Now you can add the functionality to display the Jobs when the
user clicks on a Machine node. Add this code in the TreeView
control’s Node click event to call the LoadList procedure and
pass the Node object:

Private Sub TreeView1_NodeClick(ByVal Node As Node)
'here add the next level down
'and fill ListView
LoadList Node
End Sub

The LoadList procedure will be called anytime a node is
clicked on, whether it is a Machine node or another node in the
hierarchy. The best way to handle this is to call different
procedures from this procedure based on the Key of the Node.
Remember that you used the first letter of the table to create a
unique key for the node. Now you can use a Select statement on
the first character of the Key property of the passed Node. Call
the LoadJob procedure in the machine case. You can add
procedures for the other node types later. This is a good place
to set the right label to the FullPath property of the Node object,
so the user can easily see which node is selected:

Private Sub LoadList(Node As Node)
lbRight = Node.FullPath
'select by record type
Select Case Left(Node.Key, 1)
Case "M" ‘Machine

LoadJob Mid(Node.Key, 2)
End Select
End Sub

The LoadJob procedure will fill the ListView control with five
columns of data: the JobID, ItemCode, DueDate, Quantity, and
Load. Like the TreeView control, the ListView control is made up
of collections of other objects. The ColumnHeaders collection
contains ColumnHeader objects. You can use the Add method
of the ColumnHeaders collection and set the text in the column
and the column width.

First dimension the database and record-set variables as well as
variables to hold the ListItem and ColumnHeader objects:

Private Sub LoadJob(Key$)
Dim db As Database
Dim rs As Recordset
Dim SQL$
Dim itmX As ListItem
Dim clmX As ColumnHeader, cWidth As Integer

Then open the database and use the ListView control to clear
the ColumnHeaders collection:

Set db = OpenDatabase(App.Path & "\OBJobExp.mdb")
ListView1.ColumnHeaders.Clear
VBPJ JUNE 1996 76http://www.windx.com

t

c
S

S

S

S

S

d
s
e

'
S
S
S
L

L
L
i
f
F

D

L
r
S
d
S
E

o
n
s

f
L
u
e
L
b
h
f
h
M
S
o

GETTING STARTED
WITH VBA
Add ColumnHeader objects and set their widths based on
he current width of the ListView control:

Width = (ListView1.Width - 1500) \ 5
et clmX = ListView1.ColumnHeaders. _
Add(, , "JobID", cWidth)

et clmX = ListView1.ColumnHeaders. _
Add(, , "ItemCode", cWidth)

et clmX = ListView1.ColumnHeaders. _
Add(, , "DueDate", cWidth, lvwColumnRight)

et clmX = ListView1.ColumnHeaders. _
Add(, , "Quantity", cWidth, lvwColumnRight)

et clmX = ListView1.ColumnHeaders. _
Add(, , "Load", cWidth, lvwColumnRight)

Now that you have added the columns, you can read the
atabase and add the job information. Build a SQL statement to
elect all fields from the Jobs table where the MachineID field is
qual to the MachineID passed in the Key argument:

load Jobs
QL = "select * from Jobs where MachineID = "
QL = SQL & Key
et rs = db.OpenRecordset(SQL)
istView1.ListItems.Clear

Loop through this record set and use the Add method of the
istItems collection to add the JobID to the ListView control. Each
istItem object has an array of SubItems to contain the other

nformation in the columns. Set these SubItems to the appropriate
ields in the Jobs table. Note the use of the placeholders “@” in the
ormat function to facilitate sorting of numeric data:

o While Not rs.EOF
Set itmX = ListView1.ListItems.Add(, "J" _

& rs(0), Format(rs(0), "J000"), "closed")
itmX.SubItems(1) = rs(1)
itmX.SubItems(2) = Format(rs(3), "yy-mm-dd")
itmX.SubItems(3) = Format(rs(4), "@@@@@")
itmX.SubItems(4) = Format(rs(5), "@@@@@")
rs.MoveNext

oop
s.Close
et rs = Nothing
b.Close
et db = Nothing
nd Sub

Run your application and expand the tree until you can click
n one of the machine nodes. If you click on any of the machine
odes in the “SunUS\Sarasota #1\Machining\FDG” path, you
hould see the ListView fill with job data.

Now that you have a working application, it is easy to add more
unctionality. I added code to the LoadList procedure to call the
oadSummary procedures for other nodes and display the percent
tilization of the child nodes. I also added code in the TreeView
vents to support the Node drag-and-drop actions and code in the
istView events to support both ascending and descending sorts
y column. Although the code for the entire project is not listed
ere, it is available on line in a file called GS0696.ZIP. Download the

ile from VBPJ’s Development Exchange on the World Wide Web at
ttp://www.windx.com, or from the VBPJ CompuServe Forum, or
SN site. For details, see “How to Reach Us” in Letters to the Editor.

ee what else you can add to the application and e-mail me a copy

f your best new features.

VBPJ JUNE 1996 76http://www.windx.com

