
C
m
O
H
u
f
w
C
S

U
g
f

b

1

GETTING STARTED
WITH VBA

A
Y

Click & Retrieve

Source

CODE!
se VB4’s new ToolBar control to
ive the user easy access to the
eatures of your application.

y Chris Barlow

dd a Toolbar to
our App
I
d
I
y
I
R

ing them to navigate menus. If you want your Visual Basic
application to look and feel like these professional applications,
you need to use this control. Fortunately, the new ToolBar
control included with Visual Basic 4.0 is easy to use.

First let’s get to a common starting point. You can follow the
code examples in this column to add a toolbar to any of your
existing applications. I’ll build upon the text editor example
from last month’s column. If you want to use the same code and
you haven’t downloaded the source code for the text editor
from VBPJ’s online sites, just draw a RichTextBox and
CommonDialog control on an empty form and create a standard
File menu with New, Save, and Exit menu items. For more
information on the new RichTextBox and CommonDialog con-
trols in Visual Basic 4.0, refer to my last column.

Creating menus can be time consuming because you have to
type all the menu properties for each form. How about a short-
cut? If you have another form with a standard Windows menu,
open it with Notepad and look at the source code for the form.
You’ll see a set of code starting with “Begin VB.Menu…”(see
Listing 1). Copy this code to the clipboard, then open your new
FRM file with Notepad and paste in this code. I’ve saved this
code in a text file so I can paste it into my FRM file when I need
a standard menu. It saves a lot of typing! Be sure to save the file
as ASCII text so Visual Basic can load it.

MORE COMPLICATED, BUT WORTH IT
This control is a bit more complicated than the RichTextBox and
CommonDialog controls you’ve learned about so far. Visual
Basic 4.0 is designed to use OLE Automation throughout, so you
should become familiar with using these Visual Basic objects
with their own properties, methods, and collections. One of the
reasons the ToolBar control is more complicated than the other

ou probably haven’t seen a recent professional Win-
dows application without a toolbar. Toolbars give users
quick access to your application features without forc-
hris Barlow is president and CEO of SunOpTech, a developer of
anufacturing decision-support applications including the
bjectBank and the ObjectJob Systems, where he and Ken
enderson hold a software patent related to decentralized distrib-
ted asynchronous object-oriented systems. Chris holds degrees
rom Harvard Business School and Dartmouth College where he
orked with Drs. Kemeny and Kurtz on the BASIC language. Reach
hris on the Internet at ChrisB@SunOpTech.com or through
unOpTech’s World Wide Web server at www.SunOpTech.com.

28 MARCH 1996 Visual Basic Programmer’s Journal ©1991
controls is that the toolbar buttons are a collection of Button
objects with their own properties and methods. And to make it
a bit more complex, the images on the button faces are con-
tained with the ListImages collection of an ImageList control
(see Figure 1).

To add a toolbar to your application, you need to perform
several steps. I always recommend you start writing a proce-
dure by listing the steps in pseudocode:

1. Add an ImageList control to your form.
2. Insert pictures for the button faces to the ListImages
collection of the ImageList control.
3. Add a ToolBar control to your form.
4. Set the ToolBar ImageList property to bind the toolbar
to your ImageList control.
5. Add Button objects to the toolbar.
6. Set each button’s properties to bind the button image
to the proper image.
7. Write code to handle toolbar button clicks.

I’ll go through each of these steps in detail. Start by drawing an
mageList control on your form, right-click on the control to
isplay the Properties dialog, go to the Images tab and click on the

nsert Picture button. If you look in the bitmaps/tlbr_w95 folder
ou’ll find a good selection of bitmaps for the toolbar buttons.
nsert pictures for New, Open, Save, Print, Find, Left, Center, and
ight. Now go to the Colors tab and change the BackColor
fo
m
T
su

–

Begin VB.Menu mnuFile
Caption = "&File"
Begin VB.Menu mnuNew

Caption = "&New"
End
Begin VB.Menu mnuOpen

Caption = "&Open"
End
Begin VB.Menu mnuSave

Caption = "&Save"
End
Begin VB.Menu Sep1

Caption = "-"
End
Begin VB.Menu mnuFont

Caption = "&Font"
End
Begin VB.Menu mnuPrint

Caption = "&Print"
End
LISTING 1 How About a Shortcut?
consuming because you hav

r each form. If you have another fo
enu, open it with Notepad and copy th
hen open your new FRM file with Not
re to save the file as ASCII text so V

1996 Fawcette Technical Publicat
Begin VB.Menu Sep2
Caption = "-"

End
Begin VB.Menu _

mnuExit
Caption = _

"E&xit"
End

End
Begin VB.Menu mnuEdit

Caption = "&Edit"
Begin VB.Menu _

mnuFind
Caption = _

"&Find"
End
Begin VB.Menu _

mnuNext
Caption = _

"Find &Next"
End

End
 Creating menus can be time
e to type all the menu properties
rm with a standard Windows
e source code to the clipboard.

epad and paste in this code. Be
isual Basic can load it.

http://www.windx.comions

GETTING STARTED
WITH VBA
property to the system color “Menu Bar” and the MaskColor
property to the system color “Button Face.” If you don’t adjust the
colors, you’ll find that the images are dithered when they appear
on the toolbar buttons and they’ll be difficult to see on the button
faces. At run time you can use the Add method of the ListImages
collection to add other images to the ImageList control.

Now that you have a collection of images for your toolbar, add
the ToolBar control to your form and right-click on the control to
display its property dialog. On the General tab change the ImageList
property to bind the toolbar to your ImageList control. Be sure
you have added all the images that you will need to your ImageList
control before you bind it to the toolbar because you cannot make
changes to a bound ImageList control.

Each toolbar has a collection of Button objects. You can add
Button objects to the toolbar at run time with the Add method of the
Buttons collection. At design time, on the Buttons tab of the ToolBar
control’s property dialog, click on Insert Button to add a button.
Button objects can contain either an image or a caption, or both.
Because each Button object has a ToolTipText property, however,
you probably won’t need to design a toolbar with both images and
captions. You’ll want to set the Key property of each Button object
so you can identify which button the user has clicked on.

Insert five buttons on your toolbar, set their Key and
ToolTipText properties to “New,” “Open,” “Save,” “Print,” and
“Find,” and bind them to images one through five of the ImageList
control. Click on the Apply button to see your new toolbar.

You can design a better toolbar by using the Style property
of the Button object. The default style is a normal button, just

like the buttons now on your toolbar. To separate the Print

http://www.windx.com

LISTING 2 Complete Toolbar Code. Use this code to add a toolbar to your
are also available on the VBCD, in the Magazine Library (#3

VBPJ Development Exchange World Wide Web site (http://www.windx

End With

©1991–1996 Fawcette Technical Publicatio
button slightly from the New, Open, and Save buttons, insert
another button with a style property of “separator.”

On the Buttons tab, move back to the Save button by changing the
index to three and click on the Insert Button button. Then change the
Style property to “separator.” Insert another separator button be-
tween the Print and Find buttons and after the Find button.

Buttons can also be part of a button group where only one button
at a time can be pressed. For example, if the text in our RichTextBox
Objects and Collections. You’ll need to know how
these objects relate to each other to develop a working

toolbar. The toolbar buttons are a collection of Button objects with
their own properties and methods. And to make it a bit more
complex, the images on the button faces are contained with the
ListImages collection of an ImageList control.

FIGURE 1

ImageList ControlToolBar Control ImageList Control

Buttons

Collection

ListImages

Collection

Button Object ImageList

Object
E

P
U
E
E

P
s
R
E

P
C
C
W

E
E

P
R
E

P
R

R
E

P
C

Option Explicit
Public sFind As String

Private Sub Combo1_Change()
RichTextBox1.SelFontSize = Combo1
RichTextBox1.SetFocus
End Sub

Private Sub Combo1_Click()
RichTextBox1.SelFontSize = Combo1
RichTextBox1.SetFocus
End Sub

Private Sub Form_Load()
'Initialize the combo box
Show
With Combo1
.Width = Toolbar1.Buttons("combo1").Width
.Left = Toolbar1.Buttons("combo1").Left
.Top = Toolbar1.Buttons("combo1").Top
.AddItem "10"
.AddItem "12"
.AddItem "14"
.AddItem "16"
.ListIndex = 0
.ZOrder
End With
End Sub

Private Sub Form_Resize()
With Combo1
.Width = Toolbar1.Buttons("combo1").Width
.Left = Toolbar1.Buttons("combo1").Left
.Top = Toolbar1.Buttons("combo1").Top
ap
) o
.co

n

nd Sub

rivate Sub mnuExit_Click()
nload Me
nd
nd Sub

rivate Sub mnuFind_Click()
Find = InputBox("Find what?", , sFind)
ichTextBox1.Find sFind
nd Sub

rivate Sub mnuFont_Click()
ommonDialog1.Flags = cdlCFBoth + cdlCFEffects
ommonDialog1.ShowFont
ith RichTextBox1
.SelFontName = CommonDialog1.FontName
.SelFontSize = CommonDialog1.FontSize
.SelBold = CommonDialog1.FontBold
.SelItalic = CommonDialog1.FontItalic
.SelStrikethru = CommonDialog1.FontStrikethru
.SelUnderline = CommonDialog1.FontUnderline
nd With
nd Sub

rivate Sub mnuNew_Click()
ichTextBox1.Text = ""
nd Sub

rivate Sub mnuNext_Click()
ichTextBox1.SelStart = RichTextBox1.SelStart + _
RichTextBox1.SelLength + 1
ichTextBox1.Find sFind, , Len(RichTextBox1)
nd Sub

rivate Sub mnuOpen_Click()
ommonDialog1.ShowOpen
Visual Basic Programmer’s Journal MARCH 1996 129

plication. The project files, contained in a file called TOOLBAR.ZIP,
f the VBPJ Forum on CompuServe (GO WINDX with WinCIM), the
m), or the VBPJ site on The Microsoft Network (GO WINDX).

CONTINUED ON NEXT PAGE.

s

GETTING STARTED
WITH VBA

l
F

e

a
B
o
o

End Sub

s

CONTINUED FROM PREVIOUS PAGE.

buttons for New, Open, Save, Print, Find, and text alignment.
control can be only left-aligned, centered, or right-aligned, then only
one of the Left, Center, or Right buttons should be pressed. A button
group is defined as a group of buttons with a “button group” style
surrounded by buttons with a “separator” style.

Add three more buttons with Key and ToolTipText proper-
ties of “Left,” “Center,” and “Right” to your toolbar and set their
style to “button group.”

Buttons can also have a style property of “placeholder” that
allows you to add other controls to the toolbar. Add a combo
box that will allow the user to set the size of the font. Add two
more buttons to your toolbarone with a “separator” style and
the other with a “placeholder” style. Set the Key property of the
last button to “combo1,” and the width property to 1000. Then
draw a ComboBox control on the toolbar.

You’ll need to add one more invisible button to your toolbar
with a style of “default.” A bug in Visual Basic prevents the
toolbar from wrapping properly if the last button on the toolbar
has a placeholder style. Now that your toolbar design is com-
plete (see Figure 2), it is time to add the code.

THE CODE BEHIND THE BAR
Because you have a combo box on your toolbar, you’ll need to
130 MARCH 1996 Visual Basic Programmer’s Journal

add code to initialize the combo box and to make sure it is

©1991
ocated on the placeholder button of the toolbar. In the
orm_Load event, add this code:

Private Sub Form_Load()
'Initialize the combo box
Show
With Combo1
.Width = Toolbar1.Buttons("combo1").Width
.Left = Toolbar1.Buttons("combo1").Left
.Top = Toolbar1.Buttons("combo1").Top
.AddItem "10"
.AddItem "12"
.AddItem "14"
.AddItem "16"
.ListIndex = 0
.ZOrder
End With
End Sub

You need to copy this “tracking” code to the Form_Resize
vent so the combo box always stays in the proper place:

Private Sub Form_Resize()
With Combo1
.Width = Toolbar1.Buttons("combo1").Width
.Left = Toolbar1.Buttons("combo1").Left
.Top = Toolbar1.Buttons("combo1").Top
End With
End Sub

Handling the toolbar clicks will be fairly easy because you
lready have menu items for most of these functions. The toolbar
uttonClick event passes the button object that the user clicked
n so you can write a Select statement based on the Key property
f the button:

Private Sub Toolbar1_ButtonClick(ByVal _
Button As Button)

Select Case Button.Key
Case "New": mnuNew_Click
Case "Open": mnuOpen_Click
Case "Save": mnuSave_Click
Case "Print": mnuPrint_Click
Case "Find": mnuFind_Click
Case "Left": _

RichTextBox1.SelAlignment = rtfLeft
Case "Center": _

RichTextBox1.SelAlignment = rtfCenter
Case "Right": _

RichTextBox1.SelAlignment = rtfRight
End Select
RichTextBox1.LoadFile (CommonDialog1.filename)
End Sub

Private Sub mnuPrint_Click()
CommonDialog1.Flags = cdlPDReturnDC + cdlPDNoPageNum
If RichTextBox1.SelLength = 0 Then
CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDAllPages
Else
CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDSelection
End If
CommonDialog1.ShowPrinter
RichTextBox1.SelPrint CommonDialog1.hDC
End Sub

Private Sub mnuSave_Click()
CommonDialog1.ShowSave
RichTextBox1.SaveFile (CommonDialog1.filename)
End Sub

Private Sub RichTextBox1_SelChange()
Select Case RichTextBox1.SelAlignment
Case rtfLeft
Toolbar1.Buttons("Left").Value = tbrPressed

Case rtfCenter
Toolbar1.Buttons("Center").Value = tbrPressed

Case rtfRight
Toolbar1.Buttons("Right").Value = tbrPressed

Case Else
Toolbar1.Buttons("Left").Value = tbrUnpressed
Toolbar1.Buttons("Center").Value = tbrUnpressed
Toolbar1.Buttons("Right").Value = tbrUnpressed

End Select
Combo1.Text = RichTextBox1.SelFontSize
End Sub

Private Sub Toolbar1_ButtonClick(ByVal Button As
Button)
Select Case Button.Key
Case "New": mnuNew_Click
Case "Open": mnuOpen_Click
Case "Save": mnuSave_Click
Case "Print": mnuPrint_Click
Case "Find": mnuFind_Click
Case "Left": RichTextBox1.SelAlignment = rtfLeft
Case "Center": RichTextBox1.SelAlignment = rtfCenter
Case "Right": RichTextBox1.SelAlignment = rtfRight
End Select
End Sub
Your New Toolbar. The toolbar you’ve created features
a combo box control for font selection, in addition toFIGURE 2
http://www.windx.com–1996 Fawcette Technical Publications

GETTING STARTED
WITH VBA
The only new code—the Case “Left,”
Case “Center,” and Case “Right” state-
ments—sets the alignment property of
the RichTextBox control based on which
button the user clicked on. This will
change the alignment of the selected para-
graphs or, if no text is selected, the cur-
rent paragraph. You can set these align-
ment buttons to display the actual align-
ment of the text as you move through the
text by setting each button’s Value prop-
erty within the SelChange event of the
RichTextBox control. Notice how the
“Case Else” statement “unpresses” all
buttons in the group if the alignment is
other than left, centered, or right:

Private Sub RichTextBox1_SelChange()
Select Case RichTextBox1.SelAlignment
Case rtfLeft

Toolbar1.Buttons("Left").Value = _
tbrPressed

Case rtfCenter
Toolbar1.Buttons("Center").Value = _

tbrPressed
Case rtfRight

Toolbar1.Buttons("Right").Value = _
tbrPressed

Case Else
Toolbar1.Buttons("Left").Value = _

tbrUnpressed
Toolbar1.Buttons("Center").Value = _

tbrUnpressed
Toolbar1.Buttons("Right").Value = _

tbrUnpressed
End Select
Combo1.Text = RichTextBox1.SelFontSize
End Sub

The last line of code in the
RichTextBox1_SelChange() procedure uses
the SelFontSize property to display the font
size as the cursor moves through the text.
Now you add code to change the font size of
the selected text when the user makes a
selection from the combo box on your
toolbar. This is easyjust set the SelFontSize
property of the RichTextBox control to the
default value of the combo box and return
the focus to the RichTextBox control:

Private Sub Combo1_Click()
RichTextBox1.SelFontSize = Combo1
RichTextBox1.SetFocus
End Sub

Now you have a fully functional toolbar
for your application (see Listing 2). One of
the cool things you get for “free” with the
ToolBar control is the ability to allow the
user to customize the toolbar by reorder-
ing and removing buttons. If you set the
Customize property of the toolbar to True,
the user can double-click on the toolbar
at run time to bring up a customize dialog
http://www.windx.com ©1991–1996 Fawcet
by which he or she can modify the toolbar
you set up at design time. You can even
use the SaveToolBar method to store the
current toolbar settings in the Registry
and use the RestoreToolBar method to
reload it the next time the user runs your
application.

The code discussed in this column,
Visual Basite Technical Publications
contained in a file called TOOLBAR.ZIP,
is also available on the VBCD, in the
Magazine Library (#3) of the VBPJ Forum
on CompuServe (GO WINDX with
WinCIM), the VBPJ Development Ex-
change World Wide Web site (http://
www.windx.com), or the VBPJ site on
The Microsoft Network (GO WINDX).
c Programmer’s Journal MARCH 1996 131

	Source Code

