
GETTING STARTED
WITH VBA

Click & Retrieve

Source

CODE!
Put “Hello World!” to shame by
building a fully functional text
editor in less than five minutes.

by Chris Barlow

Your First
VB4 App
tion that displays the phrase “Hello World!” on the screen.
Visual Basic 4.0 makes that kind of application trivial:

Start Visual Basic.
Double click on the form.
Type MsgBox "Hello World!" in the Form_Load event.
Run the program.

Yawn! That’s not even worth showing someone. But when I sit
down with someone who is just getting started with Visual Basic I
say, “How you’d like to build a text editor?” I can go from the Visual
Basic autoload project to a finished text editor with eight steps in
less than two minutes! Now that’s an impressive demonstration.

TWO MINUTES AND COUNTING
Load Visual Basic (32-bit), click on the form, and change the form’s
Caption property to “TextEdit.” Select the Menu Editor tool and
type in a standard File menu with New, Open, Save, and Exit menu
items (see Figure 1). Elapsed time after Steps 1 and 2: 30 seconds.

Before Windows 95 I used a TextBox control, but the new
RichTextBox control has some real advantages. The TextBox
provides multiline text, scrollbars, and built-in clipboard func-
tions. The RichTextBox control, on the other hand, includes
properties that let you change the font of selected text to bold,
italic, underline, strikethrough, color, and even hanging indents.

It also has LoadFile and SaveFile methods to open and save
files in both the RTF format and regular ASCII text format. Another
neat feature is that you load the contents of an RTF file into the
RichTextBox control simply by dragging and dropping the file
directly onto the control. You can also print all or part of the text
in a RichTextBox control using the SelPrint method.

Step 3: Draw a RichTextBox control on the form and set the
Scrollbars property to “Both.” Elapsed time: 45 seconds.

Now you need a way to identify the file to open and to save.
The new CommonDialog control provides a standard set of

ello World! is the traditional first application written by C
programmers—they get a real satisfaction struggling
through all it takes to write and compile that first applica-
Chris Barlow is president and CEO of SunOpTech, a developer of
manufacturing decision-support applications. Chris holds degrees
from Harvard Business School and Dartmouth College where he
worked with Drs. Kemeny and Kurtz on the BASIC language. Reach
Chris on the Internet at ChrisB@SunOpTech.com or through
SunOpTech’s World Wide Web server at www.SunOpTech.com.

©1991–1996 Fawcette Technical Publications
dialog boxes for operations such as opening, saving, and print-
ing files or selecting colors and fonts. It gives your Visual Basic
program access to the same dialogs used by other Windows 95
programs so you can perform all the same file functions such as
copy, rename, and quickview.

The CommonDialog control is even easier to use than the
CMDialog control you are used to from VB3. It has ShowOpen,
ShowSave, ShowPrinter, and ShowFont methods to open the
various dialogs. The trickiest part is setting the Flags property
to display and return the proper information. For example, you
can set the Flags property so that the Open dialog restricts the
user to a single directory (cdlOFNNoChangeDir), allows the File
Name list box to have multiple selections (cdlOFNAllow-
Multiselect), or limits the user to entering only names of existing
files (dlOFNFileMustExist). All these flags are documented in the
Help file, so if the dialog is not doing what you expect, search the
Help file and you’ll probably find out how to make it do what you
want (see Table 1).

Step 4: Draw a CommonDialog control on the form and right-
click on it to display the Properties dialog. Set the DefaultExt to
“txt” and set the Filter to “Text Files|*.txt|All files|*.*” (see Figure
2). Elapsed time: 60 seconds.

Now that you have the form, menu, and controls ready, add
some code. Click on the File menu, then on the New menu item
to display the click event. Type the code to clear the RichTextBox
control by setting the Text property to an empty string:
Get Started in 30 Seconds. To start building your text
editor, click on your form and change its Caption

property to “TextEdit.” Select the Menu Editor tool and type in a
standard File menu with New, Open, Save, and Exit menu items.

FIGURE 1
Visual Basic Programmer’s Journal FEBRUARY 1996 125

GETTING STARTED
WITH VBA

GETTING STARTED
WITH VBA
Private Sub mnuNew_Click()
RichTextBox1.Text = ""
End Sub

Then click on the Exit menu item in the File menu and add the
code to exit the program:

Private Sub mnuExit_Click()
Unload Me
End
End Sub

Elapsed time after Steps 5 and 6: 75 seconds. Now you’re
ready to use the CommonDialog control for the Open and Save
events. Click on the File menu, then on the Open menu item and
add the code to load a file into the RichTextBox. The ShowOpen
method of the CommonDialog control displays the standard file-
open dialog. Then the LoadFile method of the RichTextBox
control loads and display the file:

Private Sub mnuOpen_Click()
CommonDialog1.ShowOpen
RichTextBox1.LoadFile (CommonDialog1.filename)
End Sub
126 FEBRUARY 1996 Visual Basic Programmer’s Journal
By the way, I’ve gotten used to the Visual Basic code
window in the Full Module View so I can see all the procedures
for the form or module. After using VB3 for so many years, I
never thought I would make the change. But now I like the ease
of copying code from one procedure to another. Try it yourself:
select the Options menu item from the Tools menu, click on the
Editor tab, and select Full Module View (see Figure 3). If you do
this the next step will be easy. Just copy the code above to the
mnuSave_Click event and change the ShowOpen method to
ShowSave and the LoadFile method to SaveFile:

Private Sub mnuSave_Click()
CommonDialog1.ShowSave
RichTextBox1.SaveFile (CommonDialog1.filename)
End Sub

Steps 7 and 8 complete with a total elapsed time of 90 seconds.
At this point we’ve got a fully functioning text editor that:

• Supports Windows 95 Open and Save As dialogs.
Grand Old Flags? The trickiest part about using the
new CommonDialog control is setting the Flags property

to display and return the proper information. Here’s a list of Flags
that I use frequently.

TABLE 1

Frequently Used Flags for the CommonDialog control
Description Constant

File Open/Save Dialog Box Flags
Causes the Save As dialog box to generate a
message box if the selected file already exists. cdlOFNOverwritePrompt
Sets the current directory to what it was when
the dialog box was invoked. cdlOFNNoChangeDir
Causes the dialog box to display the Help button. cdlOFNHelpButton
Allows the File Name list box to have multiple selections. cdlOFNAllowMultiselect
User can enter only valid path names. cdlOFNPathMustExist
User can enter only names of existing files. cdlOFNFileMustExist
Sets the dialog box to ask if the user wants to create a
file that doesn’t currently exist. cdlOFNCreatePrompt
Use Long file names (Windows 95 only.) cdlOFNLongNames

Color Dialog Box Flags
Entire dialog box is displayed, including the
Define Custom Colors section. cdlCCFullOpen
Dialog box displays a Help button. cdlCCHelpButton

Fonts Dialog Box Flags
Dialog box lists available screen and printer fonts. cdlCFBoth
Dialog box enables strikeout, underline, and color effects. cdlCFEffects

Printer Dialog Box Flags
Returns or sets state of All Pages option button. cdlPDAllPages
Returns or sets the state of the Pages option button. cdlPDNoPageNums
Disables the Selection option button. cdlPDNoSelection
Returns or sets the state of the Pages option button. cdlPDPageNums
Displays the Print Setup dialog box rather than the
Print dialog box. cdlPDPrintSetup
Returns a device context for the printer selection value
returned in the hDC property of the dialog box. cdlPDReturnDC
Returns default printer name. cdlPDReturnDefault
Identify the File. The new CommonDialog control provides
a standard set of dialog boxes for operations such as

opening, saving, and printing files or selecting colors and fonts.

FIGURE 2
Want to See It All? If you select Full Module View on the
Editor tab in the Options dialog, you can see all the

procedures for the form or module. This gives you the ability to
easily copy code from one procedure to another.

FIGURE 3
©1991–1996 Fawcette Technical Publications

GETTING STARTED
WITH VBA

GETTING STARTED
WITH VBA
• Supports clipboard cut (Ctrl-X), copy
(Ctrl-C), and paste (Ctrl-V) functions.
• Supports one level of Undo (Ctrl-Z).
• Supports file-open with drag-and-drop
from Explorer, Word for Windows, etc.

Try to run your application, use the Win-
dows Explorer to drag a text or RTF file
and drop it on your form, make some
changes, then save it using the Save menu
item in the File menu.

DON’T STOP NOW…
You’ve completed your text editor, but
the RichTextBox control gives you some
more easy-to-use capabilites. Because
you’ve still got some time, try expanding
it a bit to allow printing and font changes
and even a simple Find function. Go back
to the Menu Editor tool, insert a separator
below the Save menu item, and add menu
items for Font and Print. Then click on the
Font menu item and add code to use the
CommonDialog control to display a dia-
log to change the Font including the name,
size, color, bold, italic, strikethrough, and
underline properties. You’ll need to use
the Flags property to display both screen
and printer fonts (cdlCFBoth) and to show
the full set of font properties
(cdlCFEffects):

Private Sub mnuFont_Click()
CommonDialog1.Flags = cdlCFBoth + _

cdlCFEffects
CommonDialog1.ShowFont

Then you need to set the properties
of your RichTextBox control to match
the properties of the CommonDialog con-
trol. Use the new With/End With state-
ment to make the code easier to read and
more efficient:

With RichTextBox1
.SelFontName = _

CommonDialog1.FontName
.SelFontSize = _

CommonDialog1.FontSize
.SelBold = CommonDialog1.FontBold
.SelItalic = _

CommonDialog1.FontItalic
.SelStrikethru = _

CommonDialog1.FontStrikethru
.SelUnderline = _

CommonDialog1.FontUnderline
End With
End Sub

Notice that these statements will change
the properties of the selected text within
the RichTextBox control. If no text is se-
lected, however, all text will be set to
these properties.

Printing is almost as easy. The only
©1991–1996 Fawcette Technical Publication
trick is to recognize that the RichTextBox
control does not print directly to the
printer, but sends the formatted text to
the device context of a device that can
print text. I don’t expect you to fully un-
derstand things like “hDC: handle to a
device context.” You just need to know
that the Printer object has an hDC prop-
erty and you need to hand that property
to the RichTextBox control’s SelPrint
Visual Basic Progrs
method. Because the CommonDialog con-
trol has a ShowPrinter dialog, you can use
it to select the proper device context. Set
the CommonDialog control’s Flag prop-
erty so that it returns the device context
in its hDC property:

Private Sub mnuPrint_Click()
CommonDialog1.Flags = cdlPDReturnDC + _

cdlPDNoPageNums
ammer’s Journal FEBRUARY 1996 127

Then, if no text is selected in the RichTextBox control,
preselect the All Pages radio button. Otherwise preselect the
Selection radio button:

GETTING S
WITH

LISTING 1 Fastest Text Editor in the West. Demonstrate the pow
five minutes.

Option Explicit
Public sFind As String

Private Sub mnuExit_Click()
Unload Me
End
End Sub

Private Sub mnuFind_Click()
sFind = InputBox("Find what?", , sFind)
RichTextBox1.Find sFind
End Sub

Private Sub mnuFont_Click()
CommonDialog1.Flags = cdlCFBoth + cdlCFEffects
CommonDialog1.ShowFont
With RichTextBox1
.SelFontName = CommonDialog1.FontName
.SelFontSize = CommonDialog1.FontSize
.SelBold = CommonDialog1.FontBold
.SelItalic = CommonDialog1.FontItalic
.SelStrikethru = CommonDialog1.FontStrikethru
.SelUnderline = CommonDialog1.FontUnderline

End With
End Sub

Private Sub mnuNew_Click()
RichTextBox1.Text = ""
End Sub
If

El

T
V

e

 RichTextBox1.SelLength = 0 Then
CommonDialog1.Flags = CommonDialog1.Flags + cdlPDAllPages
se

ARTED
BA

r of Visual Basic and build a powerful text editor in less than

Private Sub mnuNext_Click()
RichTextBox1.SelStart = RichTextBox1.SelStart + _
RichTextBox1.SelLength + 1

RichTextBox1.Find sFind, , Len(RichTextBox1)
End Sub

Private Sub mnuOpen_Click()
CommonDialog1.ShowOpen
RichTextBox1.LoadFile (CommonDialog1.filename)
End Sub

Private Sub mnuPrint_Click()
CommonDialog1.Flags = cdlPDReturnDC + cdlPDNoPageNums
If RichTextBox1.SelLength = 0 Then
CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDAllPages
Else
CommonDialog1.Flags = CommonDialog1.Flags + _

cdlPDSelection
End If
CommonDialog1.ShowPrinter
RichTextBox1.SelPrint CommonDialog1.hDC
End Sub

Private Sub mnuSave_Click()
CommonDialog1.ShowSave
RichTextBox1.SaveFile (CommonDialog1.filename)
End Sub

GETTING S
WITH

CommonDialog1.Flags = CommonDialog1.Flags + cdlPDSelection
End If

Finally, call the ShowPrinter method of the CommonDialog
control and then the SelPrint method of the RichTextBox con-
trol, handing the device context from the CommonDialog con-
trol as an argument:

CommonDialog1.ShowPrinter
RichTextBox1.SelPrint CommonDialog1.hDC
End Sub

Now you’ve got a powerful text editor that certainly beats
Notepad in what—about three minutes?

TRY TO FIND IT
Why don’t you add one more feature to your text editor: the ability
to Find with Ctrl-F and Find Next with the F3 function key. Go back
to the Menu Editor tool and add a top-level Edit with Find and Find
Next menu items. Be sure to set the shortcut keys to Ctrl-F and F3.
Because you’ll want to “remember” what you are searching for and
share that string with both the Find and Find Next functions, you
need to define a Public variable, sFind, at the top of the code in your
form. Then click on the Find menu item in the Edit menu, and use
the InputBox function to let the user set the sFind variable. Pass
that variable to the Find method of the RichTextBox control:

Private Sub mnuFind_Click()
sFind = InputBox("Find what?", , sFind)
Visual Basic Programmer’s Journal FEBRUARY 1996 129

TARTED
VBA

RichTextBox1.Find sFind
End Sub

If the Find method is successful, the found text will be
selected. In the Find Next function you need to turn off this
selection, move one character past this selected text, and
force the Find method to start at this point and search to the
end of the text. You can use the SelStart and SelLength
properties of the RichTextBox control to move past the prior
selection. Then you can pass three arguments to the Find
method of the RichTextBox control—the sFind variable as
the search parameter, an empty second argument to start at
the current insertion point, and the length of the text:

Private Sub mnuNext_Click()
RichTextBox1.SelStart = RichTextBox1.SelStart + _

RichTextBox1.SelLength + 1
RichTextBox1.Find sFind, , Len(RichTextBox1)
End Sub

I can get to this point in about five minutes—that’s usually enough
to convince anyone to give Visual Basic a try. The code discussed
in this column is also available on the VB-CD Quarterly and in the
Magazine Library (#3) of the Visual Basic Programmer’s Journal
Forum (GO VBPJ) on CompuServe (see Listing 1).

Can you think of some more quick, easy, and useful features
to add? Download my code, and see how you can enhance it, and
send me your best results. Don’t forget to include your time
estimates.

	Source Code

