INTERMEDIATE
GETTING STARTED

Your First VB App

VB5 offers speedier
results and improved
features, including
the Application

Wizard, the Toolbox,
and the Text Editor.

Chris Barlow is president and CEO of
SunOpTech, a developer of manufacturing
decision-support applications, including the
ObjectBank and the Objectob Systems. Chris
and Ken Henderson hold U.S. Patent
#5,550,976 related to software for decentral-
ized distributed asynchronous object-oriented
systems. Chris holds degrees from Harvard
Business School and Dartmouth College,
where he worked with Drs. Kemeny and
Kurtz on the Basic language. Reach Chris on
the Internet at ChrisB@SunOpTech.com or
through SunOpTech’s World Wide Web server
at www.SunOpTech.com.

by Chris Barlow

each new version. One of my most popular columns was the February 1996
Getting Started column (“Your First VB4 App”), which showed how to write a
simple text editor in VB4 in less than five minutes. Let’s build a text editor with VB5 and
see what’s changed. Time each stage and see how quickly you can build the complete app.

Last month, I discussed Visual Basic’s new Application Wizard, one of the big
enhancements in VB5. The Application Wizard helps you create a complete applica-
tion with a main form, menu, toolbar, status bar, and several ancillary forms. You can
use the Application Wizard to create the outline of your new app—after doing so, you
simply complete some “To Do” items.

So get out your stopwatch, fire up VB5, and start the Application Wizard. Choose
the Multiple Document Interface (MDI) for the user interface type. To keep this
application simple, choose the defaults by clicking on the Next button until you see the
“Application Wizard—Finished!” dialog caption. Then name the application TextEdit5,
and click on the Finish button. This series of operations took only 20 seconds to
complete on my computer.

The Application Wizard creates a Visual Basic project called TextEdit5 with two forms
and amodule, and the wizard displays a summary report of its actions. Press F5 to run this
project, and you will see a nice-looking application with a complete menu, toolbar status
bar with date and time displayed, and an MDI child window with the caption “Document
1.”However, the Application Wizard isn’t magic. If you type some text and click on the Save
menu item in the File menu, you see a message box that says “Save Code goes here!” The
Application Wizard builds the app but leaves alot of comment lines that start with “To Do,”
where you will need to add code specific to your application.

Scan these To Do comments by right-clicking on frmMain in the Project window and
clicking on View Code. Press Ctrl-F and type “To Do.” As you click on Find Next, you'll be
able to see all the To Do items—my project had 25 of them.

Before you get to work on these To Do items, take a closer look at the two forms in
your project. The frmMain form has a Toolbar control and an associated ImageList
control, a StatusBar control, and a CommonDialog control. The frmDocument form has
only a Textbox control. You don’t need to make any changes to the control on frmMain,
but I suggest you use the RichTextbox control on frmDocument, rather than the Textbox
control because the RichTextbox control has some useful built-in features.

Start your stopwatch again, and right-click on the Toolbox window to display the
Components dialog. Find “Microsoft Rich Textbox Control 5.0” and check it to add it to your
project. Then click on the Textbox control on frmDocument, deleteit,and add aRichTextbox
control in its place. Press the F4 key to display the Properties window, change the Name
property to txtText, and set the ScrollBars property to rtfBoth. Elapsed time: one minute.

NOW WRITE SOME CODE

Remember that the frmDocument you see in your project is an MDI child form that you
can use to create additional child forms when your user clicks on the New menu item
on the File menu. The Application Wizard has already added this functionality in the
LoadNewDoc procedure. Almost all of your project’s code resides in frmMain, where
the menu and toolbar are located. Display this form by right-clicking on frmMain in the
Project window and clicking on View Object.

Now click on the File menu’s Open menu item:

n itting down to write your first application in Visual Basic has gotten easier with

Private Sub mnuFileOpen_Click()
Dim sFile As String

http://www.windx.com I

Visual Basic Programmer’s Journal MAY 1997 141

INTERMEDIATE
GETTING STARTED

. TextE dits =]

File Edit ‘“window Help

D czE| &) s|=e slz|u] =|=|=|

=1 C:\Config.sys =]
E =l CAWIND DWSAWin.ini
E E =l C:VAutoexec_bat
=1 | L= E 2l C-AWINDDWSAspstem. ini
(=0 [U b
fe M|
ro|d E
p 4 |[OBORDER] -
g | [E [, |LocationCode=GM
=i g [¥ersion=2.31.03
a |7 @ |DBPath=\\BASH\C-DRIVEVSUMOPAWDATABASE
=I @ 4 |‘DPEPath=".BCELL\C-DRIVENSUNOPSDATABASE
@ o |DBPath=*"\BSHIP\C-DRIWEMSUMOPWDATABASE
e |l « |DBPath=\\Alphal'Wd-DRVENSUNOPSDATABASE
5 |C L |DBPath="\GMM\E-DRIWELOBORDERMDATAVERSZ
i |C |j |:‘DBEPath=c:temp
c | |DEFath="BSERYET:C-
o |DRWEMOBORDERADATAVERZ
DEPath=c: mypdocu™1
Proglang=Englizh
FrterRu=rRR ;I

| Status [2A11/97 [10:51 AM ,,,;

The Three-and-a-Half-Minute Text Editor. In a very short time, you can
create a useful tool and wow your non-Visual Basic programmer friends.

FIGURE 1

With dlgCommonDialog
'To Do
'set the flags and attributes of
'the common dialog control
CFilter = "A11 Files (*.%)|*.*"
.ShowOpen
If Len(.filename) = 0 Then
Exit Sub
End If
sFile = .filename
End With
'To Do
'process the opened file
End Sub

Replace the last two lines in the proce-
dure with this code. The code calls the
LoadFile method of the RichTextbox con-
trol of the active document form:

ActiveForm.txtText.LoadFile (sFile)
ActiveForm.caption = sFile

The form’s caption property is a con-
venient place to store the path and file
name being edited. You can use this prop-
erty when you need to save the file.

The File menu has three different
“Save” menu items: “Save” to write the
document back with the name on the
caption, “Save As” to give the file a new
name, and “Save All” to save all open
documents. If the caption starts with
“Document,” you can assume that the
user has not assigned a file name yet. Add
this code to the mnuFileSave_click event:

Dim sFile As String
If Left(ActiveForm.Caption, 8) = _
"Document"” Then
mnuFileSaveAs Click
Else
sFile = ActiveForm.Caption
ActiveForm.txtText.SaveFile (sFile)
End If

Putthis codeinthe mnuFileSaveAs_click
event. Notice that this code uses the
ShowOpen method of the CommonDialog
control to let the user choose the file name.
Simply set the caption property and call the
mnuFileSave_click event to actually save
the file:

Dim sFile As String
With dlgCommonDialog
CFilter = "A11 Files (*.%)|*.*"
.ShowOpen
If Len(.filename) = 0 Then
Exit Sub
End If
sFile = .filename
End With
ActiveForm.Caption = sFile
mnuFileSave Click

142 MAY 1997 Visual Basic Programmer’s Journal

http://www.windx.com I

My stopwatch shows that it took another 90 seconds to type
those 18 lines of code. Elapsed time: 1:30.

You now have a working text editor that can load and save
multiple document files. I'll give you a hint on the Save All menu
item—it uses the Forms collection to loop through all
frmDocument forms. For details, see the enhanced Text Editor
available on the Premier Level of The Development Exchange
(for details, see the Code Online box at the end of this column).

TOOLBAR FORMAT CONTROL

Now you can activate the format buttons on the toolbar to
format the text in the active document. The RichTextbox con-
trol has several properties that begin with “Sel...” that control
the format of the selected text. For example, SelBold returns
True if the selected text’s font is bold. You can add code in each
Case statement in the tbToolBar_ButtonClick event to toggle
the appropriate format property:

Case "Bold"

ActiveForm.txtText.SelBold = Not ActiveForm.txtText.SelBold

Case "Italic"

ActiveForm.txtText.SelItalic = Not _
ActiveForm.txtText.Selltalic

Case "Underline"”

ActiveForm.txtText.SelUnderline = Not _
ActiveForm.txtText.SelUnderline

Copy this line of code under the Italics Case statements, and
change them to set the Selltalic and SelUnderline properties. The
Left, Center, and Right alignment buttons are just as easy. Simply
set the SelAlignment property to rtfLeft. All you have to do then is
quickly copy and paste for Center and Right—remember, the
stopwatch is running:

Case "Left"
ActiveForm.txtText.SelAlignment = rtflLeft
Case "Center"

ActiveForm.txtText.SelAlignment = rtfCenter
Case "Right"
ActiveForm.txtText.SelAlignment = rtfRight

You can use the SelText property of the RichTextbox con-
trol to get or set the text the user selects. You can use this
property to activate the Cut, Copy, and Paste toolbar buttons
using Visual Basic’s Clipboard object’s GetText and SetText
methods. The copy function simply places the selected text in
the clipboard. The cut function first calls the copy function to
place the text in the clipboard, and then sets the selected text
to an empty string.

Finally, the paste function uses the Clipboard object’s GetText
method to insert the text in the RichTextbox control at the
insertion point, replacing any selected text:

Private Sub mnuEditCopy Click()
Clipboard.SetText ActiveForm.txtText.SelText
End Sub

Private Sub mnuEditCut_Click()
mnuEditCopy_Click
ActiveForm.txtText.SelText = ""
End Sub

Private Sub mnuEditPaste Click()
ActiveForm.txtText.SelText = Clipboard.GetText
End Sub

INTERMEDIATE
GETTING STARTED

My stopwatch shows an elapsed time of 3:20 to get to this
point—not too bad for a full-featured text editor (see Figure 1).
Show that to COBOL and C programmers!

There are still afew To Do items in the code, such as the Send
menu item and the most recently used menu items on the File
menu. For the complete source code listing, go to the Registered
Level of The Development Exchange (DevX). Take a look at the
Premier Level of DevX for a more complete implementation of
this text editor, which includes the Save All menu item, the Find
menu item, and the Most Recently Used list. E-mail me your
enhancements along with your elapsed time, and I'll include a
few of the best in a future column. x|

Code Online

You can find all the code published in this issue of VBPJ on The
Development Exchange (DevX) at http://www.windx.com. All the listings
and associated files essential to the articles are available for free to
Registered members of DevX, in one ZIP file. This ZIP file is also posted in
the Magazine Library of the VBPJ Forum on CompuServe. DevX Premier
Club members ($20 for six months) can get each article’s listings in a
separate file, as well as additional code and utilities for selected articles,
plus archives of all code ever published in VBPJ and Microsoft Interactive
Developer magazines.

Your First VB5 App
Locator+ Codes
Listings ZIP file (free Registered Level): VBPJ0597

& Listings for this article plus a more complete implementation of the
text editor (subscriber Premier Level): GS0597P

http://www.windx.com I

Visual Basic Programmer’s Journal MAY 1997 143

