
http://www.windx.com

I N T E R M E D I A T E

G E T T IN G S TA R T ED

b y C h r i s B a r l o w

Edit Existing Files

Chris Barlow is president and CEO
SunOpTech, a developer of manufacturi
decision-support applications, including t
ObjectBank and the ObjectJob Systems. Ch
and Ken Henderson hold U.S. Pate
#5,550,976 related to software for decentr
ized distributed asynchronous object-orient
systems. Chris has degrees from Harva
Business School and Dartmouth Colleg
where he worked with Drs. Kemeny an
Kurtz on the Basic language. Reach Chris o
the Internet at ChrisB@SunOpTech.com
through SunOpTech’s World Wide Web serv
at www.SunOpTech.com.

Create a simple app

that converts data

to a new file and

implement

editing features

Click & Retrieve
Source

CODE!
other skillyou need to practice.
However, if programming Visual Basic isn’t your full-time job, you probably have

difficulty finding practice applications. It’s easy to skim a magazine or book and convince
yourself that you understand the details. It is quite a different story to sit down with a
blank Visual Basic project and create an application from nothing.

If you really want to develop your new Visual Basic skills, you need a problem you can
solve with Visual Basic, so you can use the problem as an opportunity to write a simple
VB application. Doing this isn’t as easy as it sounds because today’s word processors
and spreadsheets have so many powerful features that they can be used to solve many
problems that required a custom program in the past.

Last week, for example, I purchased an electronic organizer. Nothing fancyno
Windows CE or modemjust a shirt-pocket device to keep track of addresses and
appointments. The selling point for me was that it has a serial link to my laptop. As I began
to download names and addresses from my contact manager, I found some problems.

My contact manager allows me to enter names as “FirstName LastName” or as
“LastName, FirstName.” It finds and sorts these contacts in the proper order. Over the
years, I’ve used both formats. The organizer, however, is less sophisticated and sorts by
the first character in the field. In addition, because the organizer’s screen size is only 8 by
20 characters, I needed to break some of the lines to make them readable. I realized I needed
to juggle some of the data fields before downloading the records to the organizer.

Because the organizer’s import file is stored as an ASCII file, my first thought was to
use Excel or Word to manipulate the data. I tried loading the file into Word and using the
search-and-replace function. But when I saved the file of 500 names and tried to
download it to the organizer, I succeeded in downloading only one name. When I
compared the modified file with the unmodified version I had saved (always save your
work!) I found that Word inserted a carriage return and line feed after every partial line,
but the organizer seemed to expect only a line feed. I decided this was a great opportunity
to write a small Visual Basic program to handle the data conversion.

DATA FILE CONVERSION
The first step is to start a new project in Visual Basic. I’m using VB4, but the code works
about the same in VB3 or VB5. Add a TextBox control to the form by clicking on the icon
in the toolbox and drawing the control on the form. Be sure to set the MultiLine
property of the control to True so it displays all the lines in the file. You don’t need to
worry about the exact size at this time because you can write code to adjust the
dimensions in the Form_Resize event (see Listing 1).

One of Visual Basic’s real strengths is how it works with files. Simply by using VB’s
various file statements you can get a lot of practice with small applications. When you
open a file with the Visual Basic Open statement, you need to specify the file mode. The
simplest modes open the file sequentially to either input or output a line of ASCII
characters ending with a carriage return and line feed. In this mode, you must select
either input or output. If you are going to read data from the file, use Input mode. If you
plan to write to the file, you have a choice of two output modes: Output mode erases data
in the file, and Append mode writes new data at the end of the file.

In addition to normal sequential input and output, VB recognizes two forms of binary file
accessbinary and random. Both of these modes allow you to read and write the entire
range of ASCII characters, including control characters such as carriage return and line feed.

ou may be getting started with Visual Basic as your first programming
language, or you already may be a proficient programmer interested in adding
Visual Basic to your repertoire. In either case, learning Visual Basic is like any

of
ng
he
ris
nt
al-
ed
rd
e,
d
n

or
er

s

.

Visual Basic Programmer’s Journal MARCH 1997 93

94 MARCH 1997 Visual Basic Programmer’s Journal

I N T E R M E D I A T E

G E T T IN G S T A R T ED

End Sub

Code for the Custom Editor. This source code is written for Visual Basic 4, but it works with only minor changes in
VB3 or VB5.LISTING 1
In these modes, you work with a block of
characters, or records, from the file. Random
mode lets you specify a fixed number of
characters for every read and write, and
Binary mode allows you to read and write a
variable number of characters with each
statement.

Add a menu to your Visual Basic form
by selecting Menu Editor from the Tools
menu. Create a simple File menu with
menu items for Open, Save, and Exit. Click
on the Open item from the File menu on
your form to add some code.

You will want to use Binary mode for
this project. Visual Basic’s Input function
is cool! With a single line of code you can
read a given number of characters from
an open file and return it to a TextBox
control. Try this code in the Open menu
item’s Click event:

Private Sub mOpen_Click()
Open "c:\windows\win.ini" _

For Binary As #1
Text1 = Input(LOF(1), 1)
Close #1
End Sub

Note the use of the LOF function to
return the length of the file in characters.
Try running this code and see your WIN.INI
file appear in the TextBox control.

Now that you get the idea of how file
access works, you need to make a few
changes to make your code more generic.
Option Explicit
Private Function Replace(sF$, sR$) As Integer
Dim pos&, iCnt
Do
pos = InStr(pos + 1, Text1, sF)
If pos Then

Text1 = Left(Text1, pos - 1) & _
sR & Mid(Text1, pos + Len(sF))

iCnt = iCnt + 1
End If

Loop While pos
Replace = iCnt
End Function

Private Sub Form_Resize()
Text1.Height = Me.Height - 400
Text1.Width = Me.Width - 100
End Sub

Private Sub mExit_Click()
End
End Sub

Private Sub mLF_Click()
Dim pos&
pos = Text1.SelStart
Text1 = Left(Text1, pos) & vbLf & Mid(Text1, pos + 1)
Text1.SelStart = pos
End Sub

Private Sub mOpen_Click()
Dim fn As Integer
fn = FreeFile
CommonDialog1.ShowOpen
Open CommonDialog1.filename For Binary As #fn
Text1 = Input(LOF(1), fn)
Close #fn
End Sub

Private Sub mRemoveMr_Click()
Dim iCnt As Integer
iCnt = Replace("Mr. & Mrs.", "")
MsgBox "Removed " & CStr(iCnt) & " Mr. & Mrs."
iCnt = Replace("Mr.", "")
MsgBox "Removed " & CStr(iCnt) & " Mr."
iCnt = Replace("Mrs.", "")
MsgBox "Removed " & CStr(iCnt) & " Mrs."
iCnt = Replace("Ms.", "")
MsgBox "Removed " & CStr(iCnt) & " Ms."
End Sub

Private Sub mReplace_Click()
Dim sF$, sR$
sF = InputBox("Enter text to find")
sR = InputBox("Enter replacement text")
MsgBox Replace(sF, sR) & " replacements"
End Sub

Private Sub mSave_Click()
Dim fn As Integer
fn = FreeFile
CommonDialog1.ShowSave
Open CommonDialog1.filename For Binary As #fn
Put #fn, , Text1.Text
Close #fn
http://www.windx.com

I N T E R M E D I A T E

G E T T IN G S TA R T ED
First, don’t use the number 1 for the file
number because you may want to have
another file open in your program. If your
program tries to open two files as number
1, you get an error. The Visual Basic func-
tion FreeFile returns the next available
file number as an integer. Change your
code to look like this:

Private Sub mOpen_Click()
Dim fn As Integer
fn = FreeFile
Open "c:\windows\win.ini" _

For Binary As #fn
Text1 = Input(LOF(1), fn)
Close #fn
End Sub

Let the user select the file to open,
rather than hard-code your procedure to
open WIN.INI. The CommonDialog con-
trol easily lets you add the same File Open
and File Save dialogs used by most Win-
dows programs. Add a CommonDialog
control to your form and rework your
code so that it looks like this:

Private Sub mOpen_Click()
Dim fn As Integer
fn = FreeFile
CommonDialog1.ShowOpen
Open CommonDialog1.filename _

For Binary As #fn
Text1 = Input(LOF(1), fn)
Close #fn
End Sub

Notice that the CommonDialog control’s
ShowOpen method changes to the folder
where the file is located, so you simply use
the FileName property to open the file. Now
you have a generic procedure that displays
a common dialog to open any file and display
it in a TextBox control.

The file-saving procedure is similar. You
can use the Put statement to write to a
binary file from the Text property of the
TextBox control. You should use the
CommonDialog control’s ShowSave method
to let the user select the file name and the
FreeFile function to select the file number:

Private Sub mSave_Click()
Dim fn As Integer
fn = FreeFile
CommonDialog1.ShowSave
Open CommonDialog1.filename For _

Binary As #fn
Put #fn, , Text1.Text
Close #fn
End Sub

Add these lines of code to resize the
TextBox control to the form size and to
end your application when the user clicks

o
F

P
T
T
E
P
E
E

p
c
t
c
p
t

E
I
f
c
a
f
t
m
“
a

http://www.windx.com
n the Exit menu item on the
ile menu:

rivate Sub Form_Resize()
ext1.Height = Me.Height - 400
ext1.Width = Me.Width - 100
nd Sub
rivate Sub mExit_Click()
nd
nd Sub

Now you have a working ap-
lication to load a file, type in

C
s

include In
Appellation

FIGURE 1
hanges, and save the file. But
he goal for this app is to provide
ustom editing of the files to im-
ort to the organizer. So let’s add
hese editing features.

DIT THE FILE
 had several edits in mind for the import
ile. I wanted to be able to insert an ASCII
ode 10, which is a line-feed character,
nywhere in the file. I wanted to search
or certain company names and replace
hem with shorter versions. My contact
anager adds an appellation, such as

Mr.,” in front of each name. I don’t need
ppellations in my organizer. Visual Basic
Visu
makes it easy to make such changes.
First, add an Edit menu to your Visual

Basic form with three menu itemsInsert
Linefeed, Replace, and Remove Appella-
tions (see Figure 1). Now click on the
Insert Linefeed menu item from the File
menu on your form to add some code.

The SelStart property of the TextBox
control contains the location of the inser-
tion point within the text. You can think of

s.
ustom Text Editor. This form is the
tandard in Word. Menu items under Edit
sert Linefeed, Replace, and Remove
al Basic Programmer’s Journal MARCH 1997 95

I N T E R M E D I A T E

G E T T IN G S T A R T ED

Code Online
You can find all the code published in this issue
of VBPJ on The Development Exchange (DevX)
at http://www.windx.com. All the listings and
associated files essential to the articles are
available for free to Registered members of
DevX, in one ZIP file. This ZIP file is also posted
in the Magazine Library of the VBPJ Forum on
CompuServe. DevX Premier Club members ($20
for six months) can get each article’s listings in
a separate file, as well as additional code and
utilities for selected articles, plus archives of
all code ever published in VBPJ and Microsoft
Interactive Developer magazines.

Edit Existing Files
Locator+ Codes
Listings ZIP file plus the complete working
version of the program discussed in this
column (free Registered Level): VBPJ0397
Listings for this article plus the working ver-
sion of the program (subscriber Premier Level):
GS0397P
the text within the TextBox control as a
long string of characters. You can use the
built-in string manipulation functions to
manipulate the text in the control just as
you can manipulate any string. To insert a
line-feed character, use the Left function
to select all the text to the left of the
insertion point, concatenate the special
constant vbLF, and concatenate the re-
mainder of the text using the Mid function:

Private Sub mLF_Click()
Dim pos&
pos = Text1.SelStart
Text1 = Left(Text1, pos) & vbLf & _

Mid(Text1, pos + 1)
Text1.SelStart = pos
End Sub

Text replacement applies the same idea.
The difference is that you need to search for
a text string, insert the replacement text,
and concatenate the remaining text start-
ing at the end of the found string. You can
use the Instr function to search for a text
string and locate its starting point. This
function has an optional parameter that
indicates the starting point of the search.
You can use this parameter to loop through
the text string until you find and replace all
occurrences of the text string. Write a ge-
neric function and pass the find string and
the replacement string as parameters:

Private Function Replace(sF$, sR$) _
As Integer

Dim pos&, iCnt
Do

pos = InStr(pos + 1, Text1, sF)
If pos Then

Text1 = Left(Text1, pos - 1) & _
sR & Mid(Text1, pos + _
Len(sF))

iCnt = iCnt + 1
End If

Loop While pos
Replace = iCnt
End Function

Notice that you can increment a counter
each time through the loop and return the
count in the function. Now you can click on
the Replace menu item on your Edit menu
and add the code to let the user enter the find
and replacement strings using the InputBox
function. You can use the MsgBox function to
display the number of replacements:

Private Sub mReplace_Click()
Dim sF$, sR$
sF = InputBox("Enter text to find")
sR = InputBox_

␣ ("Enter replacement text")
MsgBox Replace(sF, sR) & _

␣ " replacements"
96 MARCH 1997 Visual Basic Programme
End Sub

Now that you have a generic replace
function, you can reuse it to remove the
appellations from the file by replacing the
appellation with a null string. Click on the
Remove Appellations menu item on your
Edit menu and insert this code:

Private Sub mRemoveMr_Click()
Dim iCnt As Integer
iCnt = Replace("Mr. & Mrs.", "")
MsgBox "Removed " & CStr(iCnt) & _

" Mr. & Mrs."
iCnt = Replace("Mr.", "")
MsgBox "Removed " & CStr(iCnt) & _

" Mr."
iCnt = Replace("Mrs.", "")
MsgBox "Removed " & CStr(iCnt) & _

" Mrs."
iCnt = Replace("Ms.", "")
MsgBox "Removed " & CStr(iCnt) & _

" Ms."
End Sub

Easy, right? I used this little program
to reformat the import file and get the
name and address data into my organizer.

For the complete working version of
r’s Journal
the program, go to the Registered Level of
the Development Exchange (for details,
see the Code Online box). I’m sure you
can find a similar problem just waiting to
be solved by one of your new Visual Basic
applications.
http://www.windx.com

	Code!

